Content

0 Questionnaire 87 from Max Frisch

1	Introduction to Wind Energy	•••	1
	1.1 Wind Energy in the year 2010		
	1.2 The Demand for Electricity		
	1.3 Energy Policy and Governmental Instruments		
	1.4 Technological development		

2	Historical development of windmills	. 15
	2.1 Windmills with a vertical axis	. 15
	2.2 Horizontal axis windmills	. 18
	2.2.1 From the post windmill to the Western mill	18
	2.2.2 Technical innovations	. 25
	2.2.3 Begin and end of the wind power era in the Occident	28
	2.2.4 The period after the First World War until the end of the 1960s	. 29
	2.2.5 The Renaissance of the wind energy after 1980	31
	2.3 The physics of the use of wind energy	. 33
	2.3.1 Wind power	
	2.3.2 Drag driven rotors	
	2.3.3 Lift driven rotors	. 39
	2.3.4 Comparison of rotors using drag principle and lift principle	

3	Wind tu	bines - design and components	46
		or	
	3.1.1	Rotor blade	53
	3.1.2	Hub	59
	3.1.3	Blade pitch system	66
		ve train	
	3.2.1	Concepts	69
		Gearbox	
	3.2.3	Couplings and brakes	84
		Generators	
	3.3 Aux	iliary aggregates and other components	86
		Yaw system	
		Heating and cooling	
		Lightning protection	
		Lifting devices	

3.3.5 Sensors	
3.4 Tower and foundation	
3.4.1 Tower	
3.4.2 Foundation	102
3.5 Assembly and Production	103
3.6 Characteristic wind turbine data	

4 The wind	114
4.1 Origins of the wind	
4.1.1 Global wind systems	114
4.1.2 Geostrophic Wind	
4.1.3 Local wind systems	116
4.2 Atmospheric boundary layer	118
4.2.1 Surface boundary layer	119
4.2.2 Vertical wind profile	
4.2.3 Turbulence intensity	127
4.2.4 Representation of measured wind speeds in the time domain by	
frequency distribution and distribution functions	131
4.2.5 Spectral representation of the wind	138
4.3 Determination of power, yield and loads	141
4.3.1 Yield calculation using wind speed histogram	
and turbine power curve	141
4.3.2 Yield calculation from distribution function	
and turbine power curve	
4.3.3 Power curve measurement	
4.3.4 Yield prediction of a wind farm	
4.3.5 Effects of wind and site on the wind turbine loading	. 147
4.4 Wind measurement and evaluation	155
4.4.1 Cup anemometer	157
4.4.2 Ultrasonic anemometer	158
4.4.3 SODAR	159
4.5 Prediction of the wind regime	161
4.5.1 Wind Atlas Analysis and Application Programme	. 161
4.5.2 Meso-Scale models	
4.5.3 Measure-Correlate-Predict-Methode	164

5	Blade geometry according to Betz and Schmitz	. 168
	5.1 How much power can be extracted from the wind?	168
	5.1.1 Froude-Rankine Theorem	. 173
	5.2 The airfoil theory	. 175
	5.3 Flow conditions and aerodynamic forces at the rotating blade	
	5.3.1 Triangles of velocities	. 179
	5.3.2 Aerodynamic forces at the rotating blade	180

5.4 The Betz optimum blade dimensions	181
5.5 Losses	
5.5.1 Profile losses	186
5.5.2 Tip losses	188
5.5.3 Losses due to wake rotation	
5.6 The Schmitz dimensioning taking into account the rotational wake	192
5.6.1 Losses due to wake rotation	198
5.7 Wind turbine design in practice	199
5.8 Final remark	

6	Calculation of performance characteristics and partial load behaviour.	208
	6.1 Method of calculation (blade element momentum method)	.208
	6.2 Dimensionless presentation of the characteristic curves	211
	6.3 Dimensionless characteristic curves of a turbine	
	with a high tip speed ratio	212
	6.4 Dimensionless characteristic curves of a turbine	
	with a low tip speed ratio	
	6.5 Turbine performance characteristics	217
	6.6 Flow conditions	
	6.6.1 Turbines with high and low tip speed ratio: a summary	219
	6.6.2 Flow conditions in a turbine with a low design tip speed ratio	
	6.6.3 Flow conditions in a turbine with a high design tip speed ratio	
	6.7 Behaviour of turbines with high tip speed ratio and blade pitching	
	6.8 Extending the calculation method	
	6.8.1 Start-up range of $\lambda < \lambda_D$ (high lift coefficients)	
	6.8.2 Idling range of $\lambda > \lambda_D$ (Glauert's empirical formula)	234
	6.8.3 The profile drag	236
	6.8.4 The extended iteration algorithm	238
	6.9 Limits of the blade element theory and three-dimensional calculation	
	methods	
	6.9.1 Lift distribution and three-dimensional effects	
	6.9.2 Dynamic flow separation (Dynamic stall)	
	6.9.3 Method of singularities	
	6.9.4 Computational fluid dynamics applied to wind turbines	
	6.9.5 Examples of CFD application to wind turbines	248

7	Scali	ing wind turbines and rules of similarity	257
	7.1	Application and limits of the theory of similarity	257
	7.2	Bending stress in the blade root from aerodynamic forces	261
	7.3	Tensile stress in the blade root resulting from centrifugal forces	262
	7.4	Bending stresses in the blade root due to weight	264
	7.5	Change in the natural frequencies of the blade	
		and in the frequency ratios	265

7.6	Aerodynamic damping	267
7.7	Limitations of up-scaling - how large can wind turbines be?	270

Structural dynamics	272
8.1.2 Aerodynamic and hydrodynamic loads	276
8.1.3 Transient excitations by manoeuvres and malfunctions	282
8.2 Free and forced vibrations of wind turbines - examples and	
phenomenology	283
• •	
	 Structural dynamics

9 Guidelines and analysis procedures	307
9.1 Certification	307
9.1.1 Standard for certification: IEC 61400	308
9.1.2 Guidelines for the Certification of Wind Turbines	
by Germanischer Lloyd	309
9.1.3 Guidelines for Design of Wind Turbines by DNV	309
9.1.4 Regulation for Wind Energy Conversion Systems, Actions and	
Verification of Structural Integrity for Tower and Foundation	
by DIBt	309
9.1.5 Further standards and guidelines	
9.1.6 Wind classes and site categories	310
9.1.7 Load case definitions	311
9.2 Analysis concepts	312
9.2.1 Ultimate limit state and the concept of partial safety factors	312
9.2.2 Serviceability analysis	313
9.2.3 Basics of fatigue analysis	314
9.3 Example: Tubular steel tower analysis - mono-axial stress state and	
isotropic material	317
9.3.1 Ultimate limit state analysis, analysis of extreme loads	317
9.3.2 Fatigue strength analysis	
9.3.3 Serviceability analysis, natural frequencies analysis	
9.4 Example: Rotor hub analysis - multi-axial stress state and isotropic	
material	321

9.4.1 Geometric design	321
9.4.2 Ultimate limit state analysis - critical section plane method	
9.4.3 Fatigue strength analysis - procedure-dependent S/N curves	323
9.5 Example: Rotor blades analysis - mono-axial stress state and	
orthotropic material	324
9.5.1 Concept of admissible strain for analysis of the chords	325
9.5.2 Local component failure	327
9.5.3 Choice of materials and production methods	327

10	Wind pump systems	330
	10.1 Characteristic applications	
	10.2 Types of wind-driven pumps	
	10.3 Operation behaviour of wind pumps	
	10.3.1 Suitable combinations of wind turbines and pumps	
	10.3.2 Qualitative comparison of wind pump systems with	
	piston pump and centrifugal pump	345
	10.4 Design of wind pump systems	352
	10.4.1 Design target	352
	10.4.2 Selection of the rated wind speed for the wind pump design	353
	10.4.3 Design of a wind pump system with a piston pump	355
	10.4.4 Design of a wind pump system with a centrifugal pump	359

11	Wind turbines for electricity generation - basics	363
	11.1 The alternator - single-phase AC machine	364
	11.1.1 The alternator (dynamo) in stand-alone operation	364
	11.1.2 Types of excitation, internal and external pole machine	374
	11.1.3 Alternator (single-phase AC machine) in grid-connected	
	operation	376
	11.2 Three-phase machines	
	11.2.1 The three-phase synchronous machine	380
	11.2.2 The three-phase induction machine	
	11.3 Power electronic components of wind turbines - converters	

12	Supervisory and control systems for wind turbines	400
	12.1 Methods to manipulate the drive drain	
	12.1.1 Aerodynamic manipulation measures	
	12.1.2 Drive train manipulation using the load	
	12.2 Sensors and actuators	
	12.3 Controller and control systems	413
	12.4 Control strategy of a variable-speed wind turbine with a	
	blade pitching system	415
	12.5 Remarks on controller design	

Annex I	418
Annex II	424

13	Concepts	of electricity generation by wind turbines	428
	13.1 Grid	I-connected wind turbines	429
	13.1.1	The Danish concept: Directly grid-connected asynchronous	
		generators	431
	13.1.2	Directly grid-connected asynchronous generator with dynamic slip control	436
	13.1.3	Variable-speed wind turbine with converter and direct voltage	
		intermediate circuit.	438
	13.1.4	Variable-speed wind turbine with doubly-feeding asynchronous	
		generator and converter in the rotor circuit	439
	13.1.5	Power curves and power coefficients of three wind turbine	
		concepts- a small comparison	441
	13.2 Win	d turbines for stand-alone operation	443
	13.2.1	Battery chargers	444
		Resistive heaters with synchronous generators	
	13.2.3	Wind pump system with electrical power transmission	448
	13.2.4	Stand-alone wind turbines for insular grids	451
	13.2.5	Asynchronous generator operating in an insular grid	453
		d turbines in isolated grids	
	13.3.1	Wind-diesel system with a flywheel storage	457
		Wind-diesel system with a common DC line	
		Wind-diesel-photovoltaic system (minimal grid)	
	13.3.4	Final remark	459

14 Wind turbine operation at the interconnected grid	461
14.1 The interconnected electrical grid	
14.1.1 Structure of the interconnected electrical grid	
14.1.2 Operation of the interconnected grid	465
14.2 Wind turbines in the interconnected electrical grid	470
14.2.1 Technical requirements of the grid connection	470
14.2.2 Interaction between grid and wind turbine operation - network	
interaction and grid compatibility	474
14.2.3 Characteristics of wind turbine concepts for grid-connected	
operation	476

15	Planning, operation and economics of wind farm projects	480
	15.1 Wind farm project planning	481
	15.1.1 Technical planning aspects	
	15.1.2 Legal aspects of the approval process	

15.1.3 Estimation of economic efficiency	491
15.2 Erection and operation of wind turbines	
15.2.1 Technical aspects of erection and operation of wind turbines	498
15.2.2 Legal aspects	507
15.2.3 Economic efficiency of operation	
15.2.4 Influence of the hub height and wind turbine concept on the	
yield	511
15.2.5 General estimation of the annual energy yield of an idealised	
wind turbine	516

16	6 Offshore wind farms		
	16.1	Offshore environment	521
	16.2	Offshore design requirements	526
	16.3	Wind turbines	528
	16.4	Support structures and marine installation	529
	16.5	Grid connection and wind farm layout	533
	16.6	Operation and maintenance	534
	16.7	Economics	535