Contents

1	Ove	rview of Heuristic Optimization	1				
	1.1	What is Optimization?	1				
		1.1.1 Searching vs. Optimization	2				
		1.1.2 Constraints	3				
		1.1.3 Finding through a little Searching	3				
		1.1.4 Accuracy	4				
		1.1.5 Certainty	4				
	1.2	Exact vs. Heuristic Methods	5				
		1.2.1 Exact Methods	5				
		1.2.2 Heuristic Methods	6				
		1.2.3 Multi-Objective Optimization	7				
	1.3	Practical Issues	9				
	1.4	Example Theoretical Problems	11				
2	Stat	istical Analysis in Solution Space	13				
	2.1	Basic Vocabulary of Statistical Mechanics	14				
	2.2	Postulates of the Theory	18				
	2.3	Entropy	20				
	2.4	Temperature	23				
	2.5	Ergodicity	25				
3	Pro	ject Management	29				
	3.1	Waterfall Model vs. Agile Model	30				
	3.2	Design of Experiments	34				
	3.3	Prioritizing Goals	35				
4	Pre-processing: Cleaning up Data						
	4.1	Dirty Data	37				
	4.2	Discretization	38				
		4.2.1 Time-Series from Instrumentation	38				
		4.2.2 Data not Ordered in Time	39				

xix

	4.3	Outlier	Detection	40
		4.3.1	Unrealistic Data	41
		4.3.2	Unlikely Data	41
		4.3.3	Irregular and Abnormal Data	41
		4.3.4	Missing Data	42
	4.4	Data re	eduction / Feature Selection	43
		4.4.1	Similar Data	43
		4.4.2	Irrelevant Data	43
		4.4.3	Redundant Data	44
		4.4.4	Distinguishing Features	44
	4.5	Smoot	hing and De-noising	47
		4.5.1	Noise	47
		4.5.2	Singular Spectrum Analysis	48
	4.6	Repres	entation and Sampling	50
	4.7	Interpo	olation	51
	4.8	Case S	tudy: Self-Benchmarking in Maintenance of a Chemical Plant	53
		4.8.1	Benchmarking	53
		4.8.2	Self-Benchmarking	54
		4.8.3	Results and Conclusions	56
	4.9	Case S	tudy: Financial Data Analysis for Contract Planning	58
			tudy: Measuring Human Influence	62
	4.11	Case S	tudy: Early Warning System for Importance of Production	
		Alarms	s	63
5	Data	Minin	g: Knowledge from Data	67
5	5.1		pts of Statistics and Measurement	67
	5.1	5.1.1	Population, Sample and Estimation	67
		5.1.2	Measurement Error and Uncertainty	68
		5.1.2	Influence of the Observer	70
		5.1.4	Meaning of Probability and Statistics	71
	5.2		ical Testing	73
	5.2	5.2.1	Testing Concepts	73
		5.2.2	Specific Tests	75
		0.2.2	5.2.2.1 Do two datasets have the same mean?	75
			5.2.2.1 Do two datasets have the same mean result.	76
			5.2.2.2 Do two datasets have the same variance:	76
			5.2.2.4 Are there outliers and, if so, where?	77
			5.2.2.5 How well does this model fit the data?	78
	5.3	Other S	Statistical Measures	79
	0.0	5.3.1	Regression	79
		5.3.2	ANOVA	81
		5.3.3	Correlation and Autocorrelation	84
		5.3.4	Clustering	85
		5.3.5	Entropy	
		5.3.6	Fourier Transformation	

	5.4	Case Study: Optical Digit Recognition
	5.5	Case Study: Turbine Diagnosis in a Power Plant
	5.6	Case Study: Determining the Cause of a Known Fault
	5.7	Markov Chains and the Central Limit Theorem
	5.8	Bayesian Statistical Inference and the Noisy Channel
		5.8.1 Introduction to Bayesian Inference
		5.8.2 Determining the Prior Distribution
		5.8.3 Determining the Sampling Distribution
		5.8.4 Noisy Channels
		5.8.4.1 Building a Noisy Channel
		5.8.4.2 Controlling a Noisy Channel
	5.9	Non-Linear Multi-Dimensional Regression
		5.9.1 Linear Least Squares Regression
		5.9.2 Basis Functions
		5.9.3 Nonlinearity
	5.10	Case Study: Customer Segmentation
6	Mod	eling: Neural Networks 121
	6.1	What is Modeling? 121
		6.1.1 Data Preparation 124
		6.1.2 How much data is enough? 125
	6.2	Neural Networks
	6.3	Basic Concepts of Neural Network Modeling 129
	6.4	Feed-Forward Networks 131
	6.5	Recurrent Networks
	6.6	Case Study: Scrap Detection in Injection Molding Manufacturing 135
	6.7	Case Study: Prediction of Turbine Failure
	6.8	Case Study: Failures of Wind Power Plants
	6.9	Case Study: Catalytic Reactors in Chemistry and Petrochemistry 148
		Case Study: Predicting Vibration Crises in Nuclear Power Plants 152
		Case Study: Identifying and Predicting the Failure of Valves 155
	6.12	Case Study: Predicting the Dynamometer Card of a Rod Pump 157
7	Onti	mization: Simulated Annealing165
•	7.1	Genetic Algorithms
	7.2	Elementary Simulated Annealing
	7.3	Theoretical Results
	7.4	Cooling Schedule and Parameters
		7.4.1 Initial Temperature
		7.4.2 Stopping Criterion (Definition of Freezing)
		7.4.3 Markov Chain Length (Definition of Equilibrium)
		7.4.4 Decrement Formula for Temperature (Cooling Speed) 177
		7.4.5 Selection Criterion
		7.4.6 Parameter Choice 178
	7.5	Perturbations for Continuous and Combinatorial Problems
	1	a creation for continuous and contentation and the restored to the restored to the

	7.6	Case Study: Human Brains use Simulated Annealing to Think 183
	7.7	Determining an Optimal Path from A to B
	7.8	Case Study: Optimization of the Müller-Rochow Synthesis of
	7.0	Silanes
	7.9	Case Study: Increase of Oil Production Yield in Shallow-Water
	1.7	Offshore Oil Wells
	7 10	Case Study: Increase of coal burning efficiency in CHP power plant 197
		Case Study: Reducing the Internal Power Demand of a Power Plant 199
	/.11	ease study. Reducing the internal rower Demand of a rower r lant 199
8	The	human aspect in sustainable change and innovation
	8.1	Introduction
		8.1.1 Defining the items: idea, innovation, and change
		8.1.2 Resistance to change
	8.2	Interface Management
		8.2.1 The Deliberate Organization
		8.2.2 The Healthy Organization
	8.3	Innovation Management
	8.4	Handling the Human Aspect
		8.4.1 Communication
		8.4.2 KPIs for team engagement
		8.4.3 Project Preparation and Set Up 221
		8.4.4 Risk Management
		8.4.5 Roles and responsibilities 226
		8.4.6 Career development and sustainable change 228
		8.4.7 Sustainability in Training and Learning 231
		8.4.8 The Economic Factor in Sustainable Innovation
	8.5	Summary
	Refe	rences
Ind	ex	