Contents

1	Intr	oduction	1
	1.1	Markov Jump Linear Systems	l
	1.2	Some Applications of MJLS	7
	1.3	Prerequisites and General Remarks	11
	1.4	Overview of the Chapters	11
	1.5	Historical Remarks	13
2	A Fe	ew Tools and Notations	15
	2.1	Outline of the Chapter	15
	2.2	Some Basic Notation and Definitions	15
	2.3	Semigroup Operators and Infinitesimal Generator	16
	2.4	The Fundamental Theorem for Differential Equations	17
	2.5	Continuous-Time Markov Chains	19
	2.6	The Space of Sequences of <i>N</i> Matrices	23
	2.7	Auxiliary Results	26
	2.8	Linear Matrix Inequalities	29
3	Mea	m-Square Stability	33
	3.1	Outline of the Chapter	33
	3.2	The Models and Problem Statement	33
	3.3	Main Operators and Auxiliary Results	36
	3.4	Mean-Square Stability for the Homogeneous Case	44
		3.4.1 MSS, StS, and the Spectrum of an Augmented Matrix	44
		3.4.2 Coupled Lyapunov Equations	47
		3.4.3 Summary	52
	3.5	The $L_2^r(\Omega, \mathcal{F}, P)$ and Jump Diffusion Cases	52
		3.5.1 The $L_2^r(\Omega, \mathcal{F}, P)$ Disturbance Case	53
		3.5.2 The Jump Diffusion Case	55
		3.5.3 Summary	58
	3.6	Mean-Square Stabilizability and Detectability	59
		3.6.1 Definitions and LMIs Conditions	59

		3.6.2 Mean-Square Stabilizability with $\theta(t)$ Partially Known 61
		3.6.3 Dynamic Output Mean-Square Stabilizability
	3.7	Historical Remarks
4	0	dratic Optimal Control with Complete Observations 71
4		Outline of the Chapter 71
	4.1	Notation and Problem Formulation 71
	4.2	Notation and Floblem Formulation
	4.3	Dylikili S Formula
	4.4	The Finite-Horizon Optimal Control Problem
	4.5	Ine infinite-Horizon Optimal Control Problem
	4.6	Historical Remarks
5	H_2 (Optimal Control with Complete Observations
	5.1	Outline of the Chapter
	5.2	Robust and Quadratic Mean-Square Stabilizability
	5.3	Controllability, Observability Gramians, and the H_2 -Norm 85
	5.4	H ₂ Control via Convex Analysis
		5.4.1 Preliminaries
		5.4.2 Π Exactly Known
		5.4.3 Π Not Exactly Known
	5.5	The Convex Approach and the CARE
	5.6	Historical Remarks
	0	
6	Qua	dratic and H_2 Optimal Control with Partial Observations 97
	6.1	Outline of the Chapter
	6.2	Finite-Horizon Quadratic Optimal Control with Partial Observations 98
		6.2.1 Problem Statement
		6.2.2 Filtering Problem
		6.2.3 A Separation Principle for MJLS
	6.3	The H_2 Control Problem with Partial Observations
		6.3.1 Problem Statement
		6.3.2 Filtering H_2 Problem
		6.3.3 The Separation Principle
		6.3.4 An LMIs Approach for the H_2 Control Problem 123
	6.4	Historical Remarks
7	Best	t Linear Filter with Unknown $(\mathbf{x}(t), \boldsymbol{\theta}(t))$
•	71	Outline of the Chapter
	72	Preliminaries
	73	Problem Formulation for the Finite-Horizon Case 129
	74	Main Result for the Finite-Horizon Case 131
	75	Stationary Solution for the Algebraic Riccati Fountion
	7.5	Stationary Filter 130
	7.0	7.6.1 Auxiliary Results and Problem Formulation 130
		7.6.2 Solution for the Stationary Filtering Problem via the $\Delta RF = 147$
	77	Historical Remarks
	1.1	

8	H_{∞}	Control	. 151
	8.1	Outline of the Chapter	. 151
	8.2	Description of the Problem	. 151
	8.3	The Bounded Real Lemma	. 153
		8.3.1 Problem Formulation and Main Result	. 153
		8.3.2 Proof of Proposition 8.3 and Lemma 8.4	. 156
	8.4	The H_{∞} Control Problem	. 165
	8.5	Static State Feedback	. 166
	8.6	Dynamic Output Feedback	. 167
		8.6.1 Main Results	. 168
		8.6.2 Analysis of Dynamic Controllers	. 170
		8.6.3 Synthesis of Dynamic Controllers	. 176
		8.6.4 H_{∞} Analysis and Synthesis Algorithms	. 179
	8.7	Historical Remarks	. 181
0	na	- Trabaianas	102
9		gn lechniques	. 103
	9.1	Outline of the Chapter	. 103
	9.2		100
	9.5	A KODUSINESS Margin for <i>II</i>	. 109
	9.4	Robust Control	193
		9.4.1 Preliminary Results	. 194
		9.4.2 KODUST H_2 CONTROL	. 190
		9.4.5 The Equalized Case	. 199
	0.5	9.4.4 RODUST MIXED H_2/H_{∞} Control	. 200
	9.5	Robust Linear Filtering Problem via an LMIS Formulation	. 201
		9.5.1 The LWHS Formulation	· 202
		9.5.2 RODUST FILTER	. 200 200
	0.6	9.5.5 ARE Approximations for the LIMIS Problem	. 200
	9.0		. 210
10	Som	e Numerical Examples	. 213
	10.1	Outline of the Chapter	. 213
	10.2	An Example on Economics	. 213
	10.3	Coupled Electrical Machines	. 217
		10.3.1 Problem Statement	. 218
		10.3.2 Mean-Square Stabilization	. 220
		10.3.3 H_2 Control	. 220
		10.3.4 Stability Radius Analysis	. 221
		10.3.5 Synthesis of Robust Controllers	. 223
	10.4	Robust Control of an Underactuated Robotic Arm	. 223
	10.5	An Example of a Stationary Filter	. 226
	10.6	Historical Remarks	. 230
A m-	andi	v A Counled Differential and Algebraic Discoti Faustions	221
Ah		A Coupled Differential and Algebraic Riccari Equations Outline of the Appendix	. 201 221
	M.1 A 2	Coupled Differential Riccati Equations	. 231 221
	Λ.2	Maximal Solution	. 231 727
	n.3		. 251

A.4	Stabilizing Solution	
A.5	Filtering Coupled Algebraic Riccati Equations	
A.6	Asymptotic Convergence	
A.7	Filtering Differential and Algebraic Riccati Equation for	
	Unknown $\theta(t)$	
Appendix	B The Adjoint Operator and Some Auxiliary Results 255	
B.1	Outline of the Appendix	
B.2	Preliminaries	
B.3	Main Results	
Notation and Conventions		
References		
Index .		