Contents

A User's Gui	de to	Optimal Transport	1
Luigi Ambros	sio an	d Nicola Gigli	
1	Intro	duction	1
2	The	Optimal Transport Problem	3
	2.1	Monge and Kantorovich Formulations of the	
		Optimal Transport Problem	3
	2.2	Necessary and Sufficient Optimality Conditions	7
	2.3	The Dual Problem	13
	2.4	Existence of Optimal Maps	16
	2.5	Bibliographical Notes	26
3	The	Wasserstein Distance W_2	28
	3.1	X Polish Space	29
	3.2	X Geodesic Space	37
	3.3	X Riemannian Manifold	47
	3.4	Bibliographical Notes	58
4	Grad	lient Flows	59
	4.1	Hilbertian Theory of Gradient Flows	59
	4.2	The Theory of Gradient Flows in a Metric Setting	61
	4.3	Applications to the Wasserstein Case	81
	4.4	Bibliographical Notes	92
5	Geo	metric and Functional Inequalities	93
	5.1	Brunn–Minkowski Inequality	94
	5.2	Isoperimetric Inequality	94
	5.3	Sobolev Inequality	95
	5.4	Bibliographical Notes	96
6	Variants of the Wasserstein Distance		97
	6.1	Branched Optimal Transportation	97
	6.2	Different Action Functional	99
	6.3	An Extension to Measures with Unequal Mass	100
	6.4	Bibliographical Notes	102

x Contents

7	More	e on the Structure of $(\mathscr{P}_2(M), W_2)$	103
	7.1	"Duality" Between the Wasserstein and the	
		Arnold Manifolds	103
	7.2	On the Notion of Tangent Space	106
	7.3	Second Order Calculus	107
	7.4	Bibliographical Notes	130
8	Ricc	i Curvature Bounds	131
	8.1	Convergence of Metric Measure Spaces	134
	8.2	Weak Ricci Curvature Bounds: Definition and	
		Properties	137
	8.3	Bibliographical Notes	150
Reference	s		152
Uvnorhol	lia Cansa	ervation Laws: An Illustrated Tutorial	157
Alberto B		a vation Laws. All mustiated Tutoriai	151
1		servation Laws	158
1	1.1	The Scalar Conservation Law	158
	1.2	Strictly Hyperbolic Systems	160
	1.3	Linear Systems	161
	1.4	Nonlinear Effects	
	1.5	Loss of Regularity	164
	1.6	Wave Interactions	166
2		k Solutions	167
-	2.1	Rankine–Hugoniot Conditions	168
	2.2	Construction of Shock Curves	172
	2.3	Admissibility Conditions	173
3		Riemann Problem	179
5	3.1	Some Examples	179
	3.2	A Class of Hyperbolic Systems	182
	3.3	Elementary Waves	184
	3.4	General Solution of the Riemann Problem	
	3.5	The Riemann Problem for the p-System	
	3.6	Error and Interaction Estimates	
4		bal Solutions to the Cauchy Problem	
	4.1	Front Tracking Approximations	
	4.2	Bounds on the Total Variation	
	4.3	Convergence to a Limit Solution	
5	The	Glimm Scheme	
6	Con	tinuous Dependence on the Initial Data	
	6.1	Unique Solutions to the Scalar Conservation Law	
	6.2	Linear Hyperbolic Systems	212
	6.3	Nonlinear Systems	
7		queness of Solutions	
	7.1	An Error Estimate for Front Tracking Approximations	
	7.2	Characterization of Semigroup Trajectories	
	7.3	Uniqueness Theorems	
		· · · · · · · · · · · · · · · · · · ·	

Contents xi

8	The Vanishing Viscosity Approach	223
	8.1 Local Decomposition by Traveling Waves	226
	8.2 Evolution of Gradient Components	230
	8.3 Lyapunov Functionals	231
	8.4 Continuous Dependence on the Initial Data	236
	8.5 The Semigroup of Vanishing Viscosity Limit Solutions	237
9	Extensions and Open Problems	238
	9.1 Compactness Theorems	239
	9.2 An Elementary Error Estimate	240
	9.3 The Center Manifold Theorem	241
References		243
Derivation o	f Non-local Macroscopic Traffic Equations and	
	Traffic Pressures from Microscopic Car-Following Models	247
Dirk Helbing		
1	Introduction	247
2	The Gradient Expansion Approach	248
3	The Linear Interpolation Approach	250
4	An Approach Reminding of Smooth Particle	
	Hydrodynamics	253
	4.1 Derivation of the Continuity Equation	253
	4.2 Derivation of the Macroscopic Velocity Equation	255
	4.3 Discussion of the Non-locality	260
	4.4 Comparison with Other Macroscopic Traffic Models	260
5	Summary, Discussion, and Conclusions	266
References .		268
On the Cont	troversy Around Daganzo's Requiem for and	
	Resurrection of Second-Order Traffic Flow Models	271
	and Anders Johansson	2/1
1	Introduction	272
2	Summary of the Controversy Regarding	212
2	Second-Order Traffic Flow Models	273
3	Linear Instability of Macroscopic Traffic Models	
3	3.1 Derivation of the Instability Condition	278
	3.2 Characteristic Speeds, Phase, and Group Velocities	279
4	Discussion	281
•	4.1 Characteristic Speeds in the Aw–Rascle Model	
	4.2 Payne's Traffic Model	282
	4.3 Characteristic Speeds Vs. Vehicle Speeds	284
5	Linear Instability and Characteristic Speeds	~ ∪-r
J	of the Optimal Velocity Model	286
6	Summary, Conclusions, and Outlook	289
Appendix 1	Hyperbolic Sets of Partial Differential Equations	~ 07
Appendix 1	and Characteristic Speeds	291
Appendix 2	Stability Analysis for Macroscopic Traffic Models	293
- 1PP=		_,_

xii Contents

Appendix 3	Derivation of Formula (19)	294
Appendix 4	Meaning of the Group Velocity	296
Appendix 5	Linear Stability Analysis of the Optimal Velocity Model	297
Appendix 6	Correspondence of the Optimal Velocity Model with	
11	the Macroscopic Payne Model	299
References .		300
Theoretical	vs. Empirical Classification and Prediction of	
	Fraffic States	303
	g, Martin Treiber, Arne Kesting, and Martin Schönhof	
1	Introduction	303
2	On the Definition of Traffic Phases	306
3	Congested Traffic States	307
4	Derivation and Explanation of the Phase Diagram	50,
•	of Traffic States	309
	4.1 Transition to Congested Traffic for Small Bottlenecks	313
	4.2 Conditions for Different Kinds of Congested	J1.
	Traffic After the Breakdown of Traffic Flow	315
5		318
	Combinations of On- and Off-Ramps	
6	Other Phase Diagrams and Universality Classes of Models	321
7	Empirical Phase Diagram	324
	7.1 Reply to Criticisms of Phase Diagrams for	300
	Traffic Models with a Fundamental Diagram	325
_	7.2 On the Validity of Traffic Models	326
8	Summary, Conclusions, and Outlook	328
Appendix 1	Modeling of Source and Sink Terms (In- and Outflows)	329
Appendix 2	Parameter Dependence of the Instability Thresholds	
	in the Intelligent Driver Model	330
References.	••••••	331
Self-Organi	zed Network Flows	335
_	g, Jan Siegmeier, and Stefan Lämmer	
1	Introduction	335
2	Flows in Networks.	336
_	2.1 Flow Conservation Laws	337
	2.2 Two Views on Traffic Jams	339
3	Treatment of Merging, Diverging and Intersection Points	344
3		345
	3.2 Merging Flows: Two Inflows and One Outflow	345
	3.3 A Side Road Merging with a Main Road	346
	3.4 Intersection-Free Designs of Road Networks	347
	3.5 Two Inflows and Two Outflows	348
4	3.6 Inefficiencies Due to Coordination Problems	350
4	Towards a Self-Organized Traffic Light Control	351
5	Summary and Outlook	353
References		354

Contents xiii

-	-	es and Slower-is-Faster-Effect in the Control	
		tions	357
Dirk Helbing	and A	Amin Mazloumian	
1	Intro	duction	357
	1.1	Paradoxical Behavior of Transport Systems	358
2	Spec	ification of the Traffic System Under Consideration	359
3	Cons	sideration of Traffic Flows	362
4	Trav	el-Time-Oriented Signal Operation	364
	4.1	The Optimize-One-Phase Approach	365
	4.2	Transformation to Dimensionless Variables and Parameters	368
	4.3	Control Strategies and Slower-is-Faster Effect	371
	4.4	Operation Regimes for Periodic Operation	
	4.5	Minimization of Vehicle Queues	
	4.6	Complexity of Traffic Light Control	
5		mize-Multiple-Phases Approach	
3	5.1	Combined Flow-and-Delay Time Optimization	377
6		mary, Discussion, and Outlook	383
U	6.1	Self-Organized Traffic Light Control	
Appendix 1		sidering the Price of Stopping Vehicles	
Appendix 1 Appendix 2		e Than Two Traffic Phases	
		ited Forecast Time Horizon	
Appendix 3		ned Polecast Time Horizon	
References.		••••••	372
Modeling ar	ıd Op	timization of Scalar Flows on Networks	395
Simone Gött	lich ar	nd Axel Klar	
1		oduction	
2	Traf	fic Flow Networks	397
	2.1	Network Models Based on Scalar Partial	
		Differential Equations	397
	2.2	Simplified Dynamics on the Network	410
	2.3	Optimization	415
	2.4	Summary	436
3	Mod	leling Supply Networks	
	3.1	Network Models Based on Scalar Conservation Laws	437
	3.2	Optimization Problems	442
	3.3	Numerical Results	
	3.4	Summary	
References .			459
			463
		ilization of Waves on 1-d Networks	403
Enrique Zua		advation and Main Pagulta	464
1		oduction and Main Results	468
2		•	474
3		n Results on Observability and Controllability	
	3.1	Summary of Known Results	474
	3.2	The Weighted Observability Inequality	477

xiv Contents

4	Stabilization	
	4.1 Problem Formulation	478
	4.2 Observability for the Damped System	482
	4.3 The Interpolation Inequality	484
	4.4 The Main Result	486
5	Further Comments and Open Problems	487
References	- 	491