Contents

Part I **Regular Continued Fractions**

Clas	sical Notions and Definitions	3
1.1	Continued Fractions	3
	1.1.1 Definition of a Continued Fraction	3
	1.1.2 Regular Continued Fractions for Rational Numbers	4
	1.1.3 Regular Continued Fractions and the Euclidean Algorithm .	5
	1.1.4 Continued Fractions with Arbitrary Elements	6
1.2	Convergence of Infinite Regular Continued Fractions	6
1.3	Existence and Uniqueness of a Regular Continued Fraction for a	
	Given Real Number	10
1.4	Monotone Behavior of Convergents	12
1.5	Approximation Rates of Regular Continued Fractions	14
1.6	Exercises	18
On	Integer Geometry	19
		20
2.1		20
	• • • • •	20
	· ·	20
		22
		23
		24
		24
2.2		25
2.3	• • •	26
2.4	Pick's Formula	29
2.4		
2.4	The Twelve-Point Theorem	30
2.5 2.6	The Twelve-Point Theorem	30
	1.1 1.2 1.3 1.4 1.5 1.6 On 1 2.1 2.2 2.3	 1.1.1 Definition of a Continued Fraction

ix

	3.2	Geometric Interpretation of the Elements of Continued Fractions .	37
	3.3	Index of an Angle, Duality of Sails	
	3.4	Exercises	39
4	Con	plete Invariant of Integer Angles	41
4	4.1	Integer Sines of Rational Angles	41
	4.1	Sails for Arbitrary Angles and Their LLS Sequences	43
	4.2 4.3	On Complete Invariants of Angles with Integer Vertex	43
	4.3 4.4	Exercises	46
	4.4		40
5	Inte	ger Trigonometry for Integer Angles	47
	5.1	Definition of Trigonometric Functions	47
	5.2	Basic Properties of Integer Trigonometry	48
	5.3	Transpose Integer Angles	49
	5.4	Adjacent Integer Angles	51
	5.5	Right Integer Angles	54
	5.6	Opposite Interior Angles	55
	5.7	Exercises	55
	T 4.	Au -les of Intern Triongles	57
6		ger Angles of Integer Triangles	57
	6.1	Integer Sine Formula	
	6.2	On Integer Congruence Criteria for Triangles	58
	6.3	On Sums of Angles in Triangles	59
	6.4	Angles and Segments of Integer Triangles	
	6.5	Examples of Integer Triangles	
	6.6	Exercises	65
7	Con	tinued Fractions and $SL(2, \mathbb{Z})$ Conjugacy Classes. Elements of	
		ss's Reduction Theory. Markov Spectrum	67
	7.1	Geometric Continued Fractions	
		7.1.1 Definition of a Geometric Continued Fraction	67
		7.1.2 Geometric Continued Fractions of Real Spectrum	
		$SL(2,\mathbb{R})$ Matrices	68
		7.1.3 Duality of Sails	69
		7.1.4 LLS Sequences for Real Spectrum Matrices	
		7.1.5 Algebraic Sails	
		7.1.6 LLS Periods of Real Spectrum Matrices	
	7.2	Geometry of Gauss's Reduction Theory	
		7.2.1 Cases of Matrices with Complex, Real, and Coinciding	
		Eigenvalues	71
		7.2.2 Reduced Matrices	72
		7.2.3 Reduced Matrices and Integer Conjugacy Classes	
		7.2.4 Complete Invariant of Integer Conjugacy Classes	
		7.2.5 Algebraicity of Matrices with Periodic LLS Sequences	
	7.3	Some Technical Details and Open Questions Related to Gauss's	
		Reduction Theory	75
		7.3.1 Proof of Theorem 7.14	

Contents

		7.3.2 Calculation of Periods of the LLS Sequence	77
		7.3.3 Complexity of Reduced Operators	78
		7.3.4 Frequencies of Reduced Matrices	79
	7.4	Minima of Quadratic Forms and the Markov Spectrum 8	81
		7.4.1 Calculation of Minima of Quadratic Forms	81
		7.4.2 Some Properties of Markov Spectrum	32
		7.4.3 Markov Numbers	33
	7.5		85
8	Lag	range's Theorem	87
	8.1	The Dirichlet Group	87
	8.2	Construction of the Integer <i>n</i> th Root of a $GL(2, \mathbb{Z})$ Matrix	90
	8.3	-	91
	8.4		93
	8.5		96
9	Gau	ss–Kuzmin Statistics	99
	9.1	Some Information from Ergodic Theory	00
	9.2	The Measure Space Related to Continued Fractions	01
		9.2.1 Definition of the Measure Space Related to Continued	
			01
		9.2.2 Theorems on Density Points of Measurable Subsets 10	91
	9.3	On the Gauss Map	
		9.3.1 The Gauss Map and Corresponding Invariant Measure 10	
		9.3.2 An Example of an Invariant Set for the Gauss Map 10	
		9.3.3 Ergodicity of the Gauss Map	
	9.4	Pointwise Gauss-Kuzmin Theorem	
	9.5	Original Gauss–Kuzmin Theorem	
	9.6	Cross-Ratio in Projective Geometry	
	2.0	9.6.1 Projective Linear Group	
		9.6.2 Cross-Ratio, Infinitesimal Cross-Ratio	
	9.7	Smooth Manifold of Geometric Continued Fractions	
	9.8		10
	9.9	Explicit Formulas for the Möbius Form	
		Relative Frequencies of Edges of One-Dimensional Continued	
	2.10	Fractions	12
	9.11	Exercises	
10	Geor	metric Aspects of Approximation	15
		Two Types of Best Approximations of Rational Numbers	
			15
		10.1.2 Strong Best Diophantine Approximations	
	10.2		22
		10.2.1 Regular Angles and Related Markov–Davenport Forms 12	
		10.2.2 Integer Arrangements and Their Sizes	
		10.2.3 Discrepancy Functional and Approximation Model 12	
		· · · · · · · · · · · · · · · · · · ·	

	10.2.4 Lagrange Estimates for the Case of Continued Fractions
	with Bounded Elements
	10.2.5 Periodic Sails and Best Approximations in the Algebraic Case
	10.2.6 Finding Best Approximations of Line Arrangements 132
	10.3 Exercises
11	Geometry of Continued Fractions with Real Elements and Kepler's Second Law
	11.1 Continued Fractions with Integer Coefficients
	11.1 Continued Fractions with Integer Coefficients
	11.2 Continued Fractions with Real Coefficients
	Numbers
	11.2.2 Continued Fractions Related to Broken Lines
	11.3.1 Notions of Real and Angular Densities 146 11.3.2 Curves and Broken Lines 148
	11.3.3 Some Examples
	11.5.5 Some Examples 149
	11.4 Exercises
12	Extended Integer Angles and Their Summation
	12.1 Extension of Integer Angles. Notion of Sums of Integer Angles 153
	12.1.1 Extended Integer Angles and Revolution Number 154
	12.1.2 On Normal Forms of Extended Angles
	12.1.3 Trigonometry of Extended Angles. Associated Integer
	Angles
	12.1.4 Opposite Extended Angles
	12.1.5 Sums of Extended Angles
	12.1.6 Sums of Integer Angles
	12.2 Relations Between Extended and Integer Angles
	12.3 Proof of Theorem 6.8(i)
	12.3.1 Two Preliminary Lemmas
	12.3.2 Conclusion of the Proof of Theorem 6.8(i)
	12.4 Exercises
13	Integer Angles of Polygons and Global Relations for Toric
	Singularities
	13.1 Theorem on Angles of Integer Convex Polygons
	13.2 Toric Surfaces and Their Singularities
	13.2.1 Definition of Toric Surfaces
	13.2.2 Singularities of Toric Surfaces
	13.3 Relations on Toric Singularities of Surfaces
	13.3.1 Toric Singularities of n -gons with Fixed Parameter n 178
	13.3.2 Realizability of a Prescribed Set of Toric Singularities 179
	13.4 Exercises

Par	t II	Multidimensional Continued Fractions	
14	Basi	c Notions and Definitions of Multidimensional Integer Geometry	185
	14.1	Basic Integer Invariants in Integer Geometry	185
		14.1.1 Objects and the Congruence Relation	185
		14.1.2 Integer Invariants and Indices of Sublattices	186
		14.1.3 Integer Volume of Simplices	
		14.1.4 Integer Angle Between Two Planes	
		14.1.5 Integer Distance Between Two Disjoint Planes	188
	14.2	Integer and Euclidean Volumes of Basis Simplices	
		Integer Volumes of Polyhedra	
		14.3.1 Interpretation of Integer Volumes of Simplices via	
		Euclidean Volumes	192
		14.3.2 Integer Volume of Polyhedra	192
		14.3.3 Decomposition into Empty Simplices	
	14.4	Lattice Plücker Coordinates and Calculation of Integer Volumes	
		of Simplices	194
		14.4.1 Grassmann Algebra on \mathbb{R}^n and k-Forms	
		14.4.2 Plücker Coordinates	
		14.4.3 Oriented Lattices in \mathbb{R}^n and Their Lattice Plücker	
		Embedding	196
		14.4.4 Lattice Plücker Coordinates and Integer Volumes of	
		Simplices	197
	14.5	Ehrhart Polynomials as Generalized Pick's Formula	
		Exercises	
15	On l	Empty Simplices, Pyramids, Parallelepipeds	203
		Classification of Empty Integer Tetrahedra	
		Classification of Completely Empty Lattice Pyramids	
		Two Open Problems Related to the Notion of Emptiness	
		15.3.1 Problem on Empty Simplices	
		15.3.2 Lonely Runner Conjecture	
	15.4	Proof of White's Theorem and the Empty Tetrahedra Classification	
		Theorems	208
		15.4.1 IDC-System	208
		15.4.2 A Lemma on Sections of an Integer Parallelepiped	209
		15.4.3 A Corollary on Integer Distances Between the Vertices	
		and the Opposite Faces of a Tetrahedron with Empty Faces	209
		15.4.4 Lemma on One Integer Node	210
		15.4.5 Proof of White's Theorem	211
		15.4.6 Deduction of Corollary 15.3 from White's Theorem	213
	15.5	Exercises	214
16	Mul	tidimensional Continued Fractions in the Sense of Klein	215
		Background	
	16.2	Some Notation and Definitions	216
		16.2.1 A-Hulls and Their Boundaries	216

	1	6.2.2 Definition of Multidimensional Continued Fraction in the	
		Sense of Klein	
		6.2.3 Face Structure of Sails	
		Finite Continued Fractions	
		On a Generalized Kronecker's Approximation Theorem	
	1	6.4.1 Addition of Sets in \mathbb{R}^n	219
	1	6.4.2 Integer Approximation Spaces and Affine Irrational Vectors	220
	1	6.4.3 Formulation of the Theorem	
		6.4.4 Proof of the Multidimensional Kronecker's Approximation	
		Theorem	221
	165 F	Polyhedral Structure of Sails	
		6.5.1 The Intersection of the Closures of A-Hulls with Faces of	
		Corresponding Cones	224
	1	16.5.2 Homeomorphic Types of Sails	
		6.5.3 Combinatorial Structure of Sails for Cones in General	
	-	Position	228
	1	6.5.4 A-Hulls and Quasipolyhedra	
		Two-Dimensional Faces of Sails	
		6.6.1 Faces with Integer Distance to the Origin Equal One	
		16.6.2 Faces with Integer Distance to the Origin Greater than One	
		Exercises	
17		let Groups and Lattice Reduction	
		Orders, Units, and Dirichlet's Unit Theorem	
		Dirichlet Groups and Groups of Units in Orders	
		17.2.1 Notion of a Dirichlet Group	238
	I	17.2.2 On Isomorphisms of Dirichlet Groups and Certain Groups of Units	239
	1	7.2.3 Dirichlet Groups Related to Orders That Do not Have	
		Complex Roots of Unity	240
		Calculation of a Basis of the Additive Group $\Gamma(A)$	
		17.3.1 Step 1: Preliminary Statements	
		17.3.2 Step 2: Application of the LLL-Algorithm	242
	1	17.3.3 Step 3: Calculation of an Integer Basis Having a Basis of	
		an Integer Sublattice	
	17.4 (Calculation of a Basis of the Positive Dirichlet Group $\Xi_+(A)$	243
		Lattice Reduction and the LLL-Algorithm	243
		17.5.1 Reduced Bases	244
	1	17.5.2 The LLL-Algorithm	
	17.6 H	Exercises	246
18	Period	licity of Klein Polyhedra. Generalization of Lagrange's	
		rem	249
		Continued Fractions Associated to Matrices	
	18.2	Algebraic Periodic Multidimensional Continued Fractions	250

	18.3	Torus Decompositions of Periodic Sails in \mathbb{R}^3	251
	18.4	Three Single Examples of Torus Decompositions in \mathbb{R}^3	253
	18.5	Examples of Infinite Series of Torus Decomposition	
	18.6	Two-Dimensional Continued Fractions Associated to Transpose	
		Frobenius Normal Forms	261
	18.7	Some Problems and Conjectures on Periodic Geometry of	
		Algebraic Sails	262
	18.8	Generalized Lagrange's Theorem	265
	18.9	Littlewood and Oppenheim Conjectures in the Framework of	
		Multidimensional Continued Fractions	269
	18.10	Exercises	270
			071
19		dimensional Gauss-Kuzmin Statistics	
	19.1	Möbius Measure on the Manifold of Continued Fractions	
		19.1.1 Smooth Manifold of <i>n</i> -Dimensional Continued Fractions .	
		19.1.2 Möbius Measure on the Manifolds of Continued Fractions	
	19.2	Explicit Formulae for the Möbius Form	273
	19.3	Relative Frequencies of Faces of Multidimensional Continued	
		Fractions	275
	19.4	Some Calculations of Frequencies for Faces in the	
		Two-Dimensional Case	276
		19.4.1 Some Hints for Computation of Approximate Values of	
		Relative Frequencies	
		19.4.2 Numeric Calculations of Relative Frequencies	
		19.4.3 Two Particular Results on Relative Frequencies	
	19.5	Exercises	279
20	On C	onstruction of Multidimensional Continued Fractions	281
	20.1	Inductive Algorithm	281
		20.1.1 Some Background	
		20.1.2 Description of the Algorithm	
		20.1.3 Step 1a: Construction of the First Hyperface	
		20.1.4 Step 1b, 4: How Decompose the Polytope into Its Faces .	
		20.1.5 Step 2: Construction of the Adjacent Hyperface	284
		20.1.6 Step 2: Test of the Equivalence Class for the Hyperface	
		F' to Have Representatives in the Set of Hyperfaces D	285
	20.2	Deductive Algorithms to Construct Sails	
		20.2.1 General Idea of Deductive Algorithms	
		20.2.2 The First Deductive Algorithm	
		20.2.3 The Second Deductive Algorithm	
		20.2.4 Test of the Conjectures Produced in the Two-Dimensional	
		Case	290
		20.2.5 On the Verification of a Conjecture for the	
		Multidimensional Case	296
	20.3	An Example of the Calculation of a Fundamental Domain	
	20.4	Exercise	

21		ss Reduction in Higher Dimensions	
		Organization of This Chapter	
	21.2	Hessenberg Matrices and Conjugacy Classes	
		21.2.1 Notions and Definitions	303
		21.2.2 Construction of Perfect Hessenberg Matrices Conjugate to	
		a Given One	305
		21.2.3 Existence and Finiteness of ς -Reduced Hessenberg	
		Matrices	307
		21.2.4 Families of Hessenberg Matrices with Given Hessenberg	
		Туре	308
		21.2.5 5-Reduced Matrices in the 2-Dimensional Case	311
	21.3	Complete Geometric Invariant of Conjugacy Classes	
		21.3.1 Continued Fractions in the Sense of Klein–Voronoi	
		21.3.2 Geometric Complete Invariants of Dirichlet Groups	
		21.3.3 Geometric Invariants of Conjugacy Classes	
	21.4	Algorithmic Aspects of Reduction to ς -Reduced Matrices	
		21.4.1 Markov–Davenport Characteristics	318
		21.4.2 Klein–Voronoi Continued Fractions and Minima of	
		MD-Characteristics	321
		21.4.3 Construction of 5-Reduced Matrices by Klein–Voronoi	
		Continued Fractions	322
	21.5	Diophantine Equations Related to the Markov-Davenport	
		Characteristic	
		21.5.1 Multidimensional w-Sails and w-Continued Fractions	
		21.5.2 Solution of Eq. (21.1)	326
	21.6	On Reduced Matrices in $SL(3, \mathbb{Z})$ with Two Complex Conjugate	
		Eigenvalues	
		21.6.1 Perfect Hessenberg Matrices of a Given Hessenberg Type .	
		21.6.2 Parabolic Structure of the Set of NRS-Matrices	328
		21.6.3 Theorem on Asymptotic Uniqueness of ς -Reduced	
		NRS-Matrices	329
		21.6.4 Examples of NRS-Matrices for a Given Hessenberg Type $\ .$	331
		21.6.5 Proof of Theorem 21.43	
		21.6.6 Proof of Theorem 21.48	
		Open Problems	
	21.8	Exercises	345
22	App	roximation of Maximal Commutative Subgroups	347
		Rational Approximations of MCRS-Groups	347
		22.1.1 Maximal Commutative Subgroups and Corresponding	
		Simplicial Cones	348
		22.1.2 Regular Subgroups and Markov–Davenport Forms	
		22.1.3 Rational Subgroups and Their Sizes	
		22.1.4 Discrepancy Functional	
		22.1.5 Approximation Model	351

Contents

		22.1.6 Diophantine Approximation and MCRS-Group Approximation	352
	22.2	Simultaneous Approximation in \mathbb{R}^3 and MCRS-Group	552
	22.2	Approximation	353
		22.2.1 General Construction	
		22.2.2 A Ray of a Nonreal Spectrum Operator	
		22.2.3 Two-Dimensional Golden Ratio	
	22.3	Exercises	
23	Othe	er Generalizations of Continued Fractions	357
	23.1	Relative Minima	
		23.1.1 Relative Minima and the Minkowski–Voronoi Complex	358
		23.1.2 Minkowski–Voronoi Tessellations of the Plane	
		23.1.3 Minkowski–Voronoi Continued Fractions in \mathbb{R}^3	361
		23.1.4 Combinatorial Properties of the Minkowski-Voronoi	
		Tessellation for Integer Sublattices	362
	23.2	Farey Addition, Farey Tessellation, Triangle Sequences	
		23.2.1 Farey Addition of Rational Numbers	364
		23.2.2 Farey Tessellation	
		23.2.3 Descent Toward the Absolute	366
		23.2.4 Triangle Sequences	368
	23.3	Decompositions of Coordinate Rectangular Bricks and O'Hara's	
		Algorithm	373
		23.3.1 Π -Congruence of Coordinate Rectangular Bricks	374
		23.3.2 Criterion of Π -Congruence of Coordinate Bricks	375
		23.3.3 Geometric Version of O'Hara's Algorithm for Partitions	375
	23.4	Algorithmic Generalized Continued Fractions	378
		23.4.1 General Algorithmic Scheme	
		23.4.2 Examples of Algorithms	
		23.4.3 Algebraic Periodicity	
		23.4.4 A Few Words About Convergents	
		Branching Continued Fractions	
	23.6	Continued Fractions and Rational Knots and Links	
		23.6.1 Necessary Definitions	
		23.6.2 Rational Tangles and Operations on Them	
		23.6.3 Main Results on Rational Knots and Tangles	388
Ref	erenc	es	391
Ind	ex.		401