Contents

1	Cha	racteris	stics of Conventional Air-Conditioning Systems	1
	1.1	Tasks	of Indoor Environmental Control Systems	1
	1.2	Curren	nt Air-Conditioning Methods	3
		1.2.1	Air-Conditioning System Categories	3
		1.2.2	Typical Air Handling Processes in Central	
			Air-Conditioning Systems	4
	1.3	Proble	ms with Current Air Handling Methods	6
		1.3.1	Loss in the Coupled Heat and Moisture	
			Handling Process	6
		1.3.2	Energy Dissipation Caused by Offset	8
		1.3.3	Difficulty Adapting to the Variances of Indoor	
			Sensible and Moisture Loads	10
		1.3.4	Indoor Terminals	13
		1.3.5	Energy Consumption of Transportation	14
		1.3.6	Influence on Indoor Air Quality	16
	1.4	Requir	rements for a New Air-Conditioning Solution	17
	Refe	rences.		18
2	The	Basic I	dea of the THIC Air-Conditioning System	21
	2.1		Requirements for Heat and Moisture Extraction	
			with Air Quality	21
		2.1.1	Sources and Characteristics of the Indoor	
			Sensible Load	21
		2.1.2	Sources and Characteristics of the Indoor	
			Moisture Load	24
		2.1.3	Requirements for Indoor Air Quality (IAQ),	
			Including Extracting CO ₂	25
	2.2	The Ic	leal Cooling and Dehumidifying Process	30
		2.2.1	Ideal Cooling Process	30
		2.2.2	Ideal Dehumidification Process	33
		2.2.3	Total Efficiency of Cooling and Dehumidification	37

ix

Contents

	2.3	Actual	Process of Removing Heat and Moisture	38
		2.3.1	From the Ideal Process to the Actual Process	38
		2.3.2	The Temperature Levels of Actual HVAC Systems	41
		2.3.3	The Ratios of Sensible and Moisture Loads	
			in Practical Buildings	43
	2.4	The C	ore Idea of Temperature and Humidity	
		Indepe	endent Control	45
		2.4.1	Operating Principle of the THIC	
			Air-Conditioning System	45
		2.4.2	Annual Handling Requirements of Outdoor Air	47
		2.4.3	Analysis of Global Outdoor Climate Conditions	53
	2.5	Requi	rements of Devices Needed for the THIC System	55
		2.5.1	Sensible Heat Terminals	55
		2.5.2	Air Supply Terminals	56
		2.5.3	High-Temperature Cooling Sources	56
		2.5.4	Outdoor Air Handling Devices	57
	2.6	Review	w on Relative Research Concerning THIC Systems	57
		2.6.1	Relevant Research Progress of THIC Air-Conditioning	
			Methods	57
		2.6.2	Possible Ways to Construct THIC Systems	61
	Refe	rences	· · · · · · · · · · · · · · · · · · ·	65
3	Kev	Comp	onents of the THIC System: Indoor Terminals	67
-	3.1		nt Panels	68
		3.1.1	Heat Transfer Process of Radiant Terminal Devices	68
		3.1.2	Key Parameters of Radiant Panels	72
		3.1.3	Performances of Different Types of Radiant Panels	89
		3.1.4	Performance in Summer	97
		3.1.5	Performance in Winter	103
		3.1.6	Self-Regulating Property of Radiant Panels	104
		3.1.7	Impact on Indoor Thermal Comfort	106
	3.2	Dry F	an Coil Units (FCUs)	107
		3.2.1	Differences Between Dry FCUs and Wet FCUs	107
		3.2.2	Developed Dry FCU with a Similar Structure	
			as a Wet FCU	109
		3.2.3	Dry FCU with New Structures	114
	Refe	rences	• • • • • • • • • • • • • • • • • • • •	116
4	Kov	Comm	onents of the THIC System: Outdoor	
4			ng Methods	119
	4.1		Outdoor Air Handling Devices	119
	7.1	4.1.1	Requirements for Outdoor Air Handling Devices	117
		7.1.1	in Different Climate Regions	119
		4.1.2	Heat Recovery Devices	122
		4.1.2	Dehumidification Devices	122
		4.1.3	Humidification Devices	124
		7.1.4		14/

Contents

	4.2	Outdoo 4.2.1	or Air Handling Process in the Dry Region	129
			Evaporative Cooling	129
		4.2.2	Outdoor Air Humidification in Winter	133
	4.3	• • = • =	or Air Handling Process in the Humid Region	135
	1.5	4.3.1	Condensation Dehumidification Method	135
		4.3.2	Solid Desiccant Dehumidification Method	142
	Refe			153
5	Key	Compo	onents of the THIC System: Outdoor Air Processor	
			d Desiccant	155
	5.1		Properties of Liquid Desiccant	155
		5.1.1	Characteristics of Common Liquid Desiccants	155
		5.1.2	Basic Handling Module Using Liquid Desiccant	158
	5.2	-	Principles for Liquid Desiccant Outdoor	
	0.2		andling Processors	160
		5.2.1	Match Properties of the Air Handling Process	
		5.2.1	Using Liquid Desiccant	160
		5.2.2	Performance Optimization of the Air Handling	
		5.4.4	Processor Using Liquid Desiccant	166
	5.3	Perfor	mance of Liquid Desiccant Outdoor	100
	5.5		andling Processors	169
		5.3.1	Outdoor Air Handling Processor	107
		5.5.1	with Enthalpy Recovery	170
		527		170
		5.3.2	Outdoor Air Handling Processor	175
	= A	C	with Precooling Module	
	5.4	•	arison to Other Dehumidification Methods	178
		5.4.1	Comparison of Desiccant Dehumidification	170
			and Condensation Dehumidification	178
		5.4.2	Comparison of Liquid Dehumidification	
			and Solid Desiccant Dehumidification	180
	Refe	erences.	• • • • • • • • • • • • • • • • • • • •	185
6			onents of the THIC System: High-Temperature	
	Coo	0	urces	187
	6.1	Under	ground Embedded Pipe Cooling	188
		6.1.1	Operating Principle	188
		6.1.2	Analysis of the Characteristics of the Heat	
			Transfer Process	190
	6.2	Produ	cing Chilled Water Using the Evaporative	
		Coolir	ng Method	195
		6.2.1	Elemental Ways to Produce Chilled Water Using	
			the Evaporative Cooling Method	195
		6.2.2	Performance Analysis of the Evaporative	
			Water Cooler	198
				0

	6.3	Vapor	Compression Cooling Sources	200
		6.3.1	Main Features of High-Temperature Water Chillers	201
		6.3.2	Development Cases of the High-Temperature	
			Water Chiller	205
		6.3.3	Development Case of the High-Temperature	
			VRF System	212
	Refe	rences.		215
7	Desi	gn and	Operation of THIC Systems	217
	7.1	Design	n of THIC System	217
		7.1.1	Overview of System Design	217
		7.1.2	Examples of THIC Systems	222
	7.2	Load (Calculation of THIC System	224
		7.2.1	Analysis of Indoor Load	226
		7.2.2	Apportionment of Indoor Sensible Load	227
		7.2.3	Load of Major Devices	228
		7.2.4	Efficiency Comparison with Conventional System	231
	7.3	Annua	al Operation for Heating and Cooling	233
		7.3.1	Northern Area	234
		7.3.2	Yangtze River Basin	236
	7.4	Opera	ting Parameters of High-Temperature Chilled Water	238
		7.4.1	Current Operating Parameters of High-Temperature	
			Chilled Water	238
		7.4.2	Key Issues for High-Temperature Cooling	239
		7.4.3	Discussion on Operating Parameters of Chilled Water	242
	7.5	Opera	ting and Regulating Strategy of THIC System	245
		7.5.1	Operating Strategy of the THIC System	245
		7.5.2	Regulating Strategy for Supplied Outdoor Air	247
		7.5.3	Regulating Strategy of Sensible Terminals	250
		7.5.4	Anti-sweat Measures and Regulating Strategy	253
	Refe	erences		254
8	Ann	lication	n Cases of THIC Systems	255
Ŭ	8.1		cation in an Office Building (Humid Region)	257
		8.1.1	Description of the THIC System in an Office Building	257
		8.1.2	Performance Test of the THIC System	260
		8.1.3	Energy Consumption of the THIC System	273
		8.1.4	Discussions	273
		8.1.5	Conclusion	
	8.2		cation in a Hospital Building (Dry Region)	276
	~	8.2.1	Basic Information	276
		8.2.2	Performance Test Results of the THIC System	279
		8.2.3	Energy Consumption Analysis	281
	8.3		cation in a Large Space Building (Airport)	283
	0.0	8.3.1	Description of the THIC System in an Airport	283
		8.3.2	Performance On-Site Test in Summer	285
				/

		8.3.3	Performance On-Site Test in Winter	296		
		8.3.4	Conclusion	301		
	8.4	Appl	ication in an Industrial Factory	302		
		8.4.1	Description of the THIC System			
			in an Industrial Factory	302		
		8.4.2	Performance of the THIC System	306		
	Refe	rences	§	309		
9	Deve	elopm	ent Tendencies and Perspectives of the THIC Systems	311		
	9.1	Deve	elopment of the THIC Systems in China	311		
	9.2		dards of Key Components for THIC Systems	313		
	9.3	Persp	pectives of the THIC System	314		
	Refe	rences	3	315		
Aŗ			•••••••••••••••••••••••••••••••••••••••	317		
			A: Moisture Load Calculation	317		
			Noisture Generated by Occupants	317		
			Aoisture from Open Water Surface	318		
			Aoisture from Plant Transpiration	319		
			nfiltration Moisture Through Building Envelope	319		
	Appendix B: Global Climate Analysis and Standards for Water Chillers 3					
	for Water Chillers					
	_		Global Outdoor Humidity Ratios in Summer	321		
	_		Standards for Water Chillers in Different Countries	324		
	Appendix C: Typical Buildings' Models and Preferences					
			oftware	327		
			Addels and Parameter Settings for Different Buildings	327		
			Load Calculation Result Analysis	333		
			Load Apportionment Analysis of the THIC System	337 337		
		Appendix D: Surface Temperature Unevenness of Radiant Panel				
	_		Jniform Indoor Heat Sources	337		
	L		Nonuniform Indoor Heat Sources or Shading			
			by Furniture	339		
	Appendix E: Performance Analysis of Heat Pump-Driven Liquid					
			Systems	346		
	_		Model for Performance Simulation	346		
			Performance Analysis of the Two Basic HPLD Systems	348		
			Performance Improvement of Basic Type I	350		
			Performance Improvement of Basic Type II	353		
	Refe	erence	S	355		