Contents

T٤	Table of FiguresXI Nomenclature						
No							
1	Intr	Introduction					
	1.1	Motivation	1				
	1.2	Wind Power Conversion Systems	3				
		1.2.1 Wind Turbine Classification	3				
		1.2.2 Wind Turbine Model Structure	5				
	1.3	Aim of the Work	7				
	1.4	Structure of the Work	9				
2	Moo	lel of the Turbine Aerodynamics	11				
	2.1	Introduction	11				
	2.2	Energy Capture from the Wind	11				
	2.3	Aerodynamics of Rotor Blades	13				
		2.3.1 Simplified Representation	15				
	2.4	Simulation using $cP-\lambda$ Tables	17				
		2.4.1 Functional Representations for $cP-\lambda$ Tables	18				
		2.4.2 Polynomial Fit Representation for cP-λ Tables	19				
	2.5	Linearized Aerodynamic Models	20				
		2.5.1 Linearization along the Operation Trajectory	21				
		2.5.2 Steady state operating trajectory	22				
		2.5.3 Partial Derivative $\Delta P \Theta$: Change of Power with respect to					
		Blade Pitch Angle	25				
		2.5.4 Partial Derivative $\Delta P\Omega$, WR: Change of Power with					
		respect to Rotor Speed	29				
		2.5.5 Resulting model structure	33				
		2.5.6 Calculation initial Values for Wind Speed	33				
		2.5.7 Operation of the Turbine with Active Power Limitation	34				
		2.5.8 Comparison with cP-λ Table Representation	39				
		2.5.9 Comparison with other cP-λ Representations	41				
	2.6	Representation of Dynamic Inflow Phenomena	42				
	2.7	Comparison with Measurements	42				
	2.8	Summary	45				

3	Mod	lel of the Turbine Structural Dynamics	.47
	3.1	Introduction	.47
	3.2	Higher Order Representations of Drive Train, Blades and Tower	.47
		3.2.1 Gearbox Representation	.48
		3.2.2 Representation of Higher Order Drive Train	
		Eigenfrequencies	49
		3.2.3 Detailed Blade Structural Representation	. 50
		3.2.4 Tower Shadow, Rotor Imbalance and Rotor	
		Eigenfrequencies	52
		3.2.5 Impact of Production Tolerances and Aging Effects	52
		3.2.6 Tower Representation	52
	3.3	Single and Two Mass Representation of the Drive Train	55
		3.3.1 Single Mass Representation of the Drive Train	55
		3.3.2 Two Mass Representation of the Drive Train	56
		3.3.3 Comparison of Single and Two Mass Representations	58
	3.4	Summary	61
4	Mo	del of the Turbine Control	63
	4.1	Introduction	63
	4.2	Fixed Speed / Limited Speed Range Wind Turbine Control	64
	4.3	Variable Speed Wind Turbine Control	66
		4.3.1 Operation below Rated Wind Speed	66
		4.3.2 Operation at and Beyond Rated Wind Speed	70
	4.4	Pitch Control Loop	71
		4.4.1 Pitch-Speed Controller	72
		4.4.2 Pitch Compensator	73
		4.4.3 Pitch FRT Boost	73
		4.4.4 Pitch Actuator Model	74
		4.4.5 Pitch Controller and Actuator Models	74
	4.5	Torque/Active Power Control Loop	75
		4.5.1 Power or Torque PI Control	75
		4.5.2 Effect of Drive Train Damping on Power Output	76
	4.6	Summary	80
5	Ger	nerator and Converter	81
	5.1	Introduction	81
	5.2	Model of the DFG	82
		5.2.1 Basic DFG Equations	84
		5.2.2 DFG Model Representation	84
		5.2.3 MSC Control Representations	87
		5.2.4 Combined DFG and MSC Model	89
		5.2.5 LSC Model Representation	90
		5.2.6 Aggregated DFG Model	94

		5.2.7	Selection of Reference Frame	95
		5.2.8	Optional Identification of Model Parameters	97
		5.2.9	Simplified Aggregated Model of DFG using First Order	
			Lag	98
	5.3	Mode	el of the FSC	98
	5.4	Mode	el Structure	. 100
		5.4.1	Implementation of the Norton Equivalent (Current Source)	100
		5.4.2	Current Limitation	. 101
		5.4.3	Wind turbine Transformer	. 104
		5.4.4	DC-Link Energy Absorber for FSC	. 104
		5.4.5	Resulting Generator and Converter Model	. 105
	5.5	Valid	ation Results	. 106
		5.5.1	Measurements and Simulations of DFG based Wind	
			Turbines	. 106
		5.5.2	Comparison of Proposed and Simplified DFG Model	. 108
		5.5.3	Measurements and Simulations of FSC based Wind	
			Turbines	. 109
		5.5.4	Validation Results	. 109
	5.6	Summ	nary	. 111
			•	
6	Read	ctive P	ower Control of Wind Plants	. 113
	6.1	Intro	duction	. 113
		6.1 .1	Limitations of the existing grid code requirements	.113
		6.1.2	Typical wind plant configuration	.114
	6.2	React	tive power Requirements of Power Stations and Wind	
		Plant	S	. 115
		6.2.1	Reactive Power Control during Normal System Conditions	.115
		6.2.2	Fast Voltage Control to Sudden Voltage Changes	. 116
		6.2.3	Summary of the Requirements	.117
	6.3	Reac	tive Current Contribution of Synchronous Generators	. 119
		6.3.1	Detailed Synchronous Generator Model	. 119
		6.3.2	Simplified Model for Current Calculation during Grid	
			Faults	. 122
		6.3.3	Static Calculation of Synchronous Generator Reactive	
			Current Gain	. 124
		6.3.4	Dynamic Simulation of Reactive Current Gain of	
			Synchronous Generators	. 127
	6.4	Wind	Plant Implementation of Reactive Power Control	. 130
		6.4.1	Wind Plant Controller Design	. 130
		6.4.2	Control Structure using Voltage Reference at Turbine	
			Level	. 133
		6.4.3	Control Structure using Reactive Power or Reactive	
			Current Reference at Turbine Level	. 138
	6.5	Eval	uation of the Proposed Reactive Power Control Structure	. 143

- -

		6.5.1 Comparison of Wind Plant and Synchronous Generation	143	
		6.5.2 Background on Reactive Power Control of Wind Turbines	3	
		with Dead Band during Grid Faults	149	
		6.5.3 Comparison to Wind Plant using Reactive Power Control		
		with Dead Band	152	
		6.5.4 Comparison to Measurements	156	
	6.6	Summary	158	
7	Summary and Conclusion			
	7.1	Generic Wind Turbine Model Development	159	
	7.2	Wind Plant Reactive Power Control	161	
8	References			
	8.1	Literature	165	
	8.2	Publications		
	8.3	Patents	174	
	8.4	Patent Applications	175	
A	Ano	endix		
	A.1	Space Vectors	177	
		A.1.1 Control Representation	178	
		A.1.2 Negative Sequence Representation	178	
		A.1.3 Zero Sequence Components	179	
	A.2	Sign Conventions		
		A 2.1 Effective Value		
		A 2.2 Symmetrical Components		
	A.3	Calculation of Symmetrical Components according to IEC		
	11.5	61400-21		
	A 4	FRT Testing Procedure	183	
	4 NT			