HANSER

Leseprobe

zu

"RFID-Handbuch" (7. Auflage)

von Klaus Finkenzeller

ISBN (Buch): 978-3-446-43943-6

ISBN (E-Book): 978-3-446-44439-3

Weitere Informationen und Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-43943-6 sowie im Buchhandel

Inhaltsverzeichnis

Vorv	vort zur 7.	Auflage	XVII
Verw	vendete Ab	kürzungen	XIX
1	Einführ	ung	1
1.1	Automat	ische Identifikationssysteme	2
	1.1.1	Barcode-Systeme	2
	1.1.2	Optical Character Recognition	4
	1.1.3	Biometrische Verfahren	5
	1.1.3.1	Sprachidentifizierung	5
	1.1.3.2	Fingerabdruckverfahren (Daktyloskopie)	6
	1.1.4	Chipkarten	6
	1.1.4.1	Speicherkarten	8
	1.1.4.2	Mikroprozessorkarten	8
	1.1.5	RFID-Systeme	9
1.2	Vergleich	h verschiedener ID-Systeme	9
1.3	Bestandt	eile eines RFID-Systems	11
2	Unterscheidungsmerkmale von RFID-Systemen		13
2.1	Grundsätzliche Unterscheidungsmerkmale		13
2.2	Bauform	nen von Transpondern	16
	2.2.1	Disks und Münzen	16
	2.2.2	Glasgehäuse	16
	2.2.3	Plastikgehäuse	17
	2.2.4	Werkzeug- und Gasflaschenidentifikation	18
	2.2.5	Schlüssel und Schlüsselanhänger	19
	2.2.6	Uhren	20
	2.2.7	Bauform ID-1, kontaktlose Chipkarten	20
	2.2.8	Smart Label	22
	2.2.9	Coil-on-Chip	23
	2.2.10	Weitere Bauformen	24
2.3	Frequenz	z, Reichweite und Kopplung	24
2.4	Aktive u	nd passive Transponder	25
2.5	Informat	ionsverarbeitung im Transponder	27
2.6	Auswahl	lkriterien für RFID-Systeme	29
	2.6.1	Arbeitsfrequenz	30
	2.6.2	Reichweite	30
	2.6.3	Sicherheitsanforderungen	31
	2.6.4	Speicherkapazität	32

3	Grundle	gende Funktionsweise	33
3.1	1-bit-Tra	nsponder	. 34
	3.1.1	Radiofrequenz	. 34
	3.1.2	Mikrowelle	. 37
	3.1.3	Frequenzteiler	. 39
	3.1.4	Elektro-Magnetisch	. 40
	3.1.5	Akustomagnetisch	. 43
3.2	Voll- und	d Halbduplexverfahren	. 45
	3.2.1	Induktive Kopplung	. 47
	3.2.1.1	Energieversorgung passiver Transponder	. 47
	3.2.1.2	Datenübertragung Transponder > Lesegerät	. 50
	3.2.2	Elektromagnetische Backscatter-Kopplung	. 58
	3.2.2.1	Energieversorgung der Transponder	. 58
	3.2.2.2	Datenübertragung Transponder > Leser: Modulierter Rückstrahlquerschnitt	. 60
	3.2.3	Close coupling	. 61
	3.2.3.1	Energieversorgung der Transponder	. 61
	3.2.3.2	Datenübertragung Transponder > Leser	. 62
	3.2.3.3	Close Coupling Chipkarten	. 63
	3.2.4	Elektrische Kopplung	. 65
	3.2.4.1	Energieversorgung passiver Transponder	. 65
	3.2.4.2	Datenübertragung Transponder > Lesegerät	. 67
3.3	Sequention	elle Verfahren	. 67
	3.3.1	Induktive Kopplung	. 67
	3.3.1.1	Spannungsversorgung des Transponders	. 67
	3.3.1.2	Vergleich zwischen FDX-/HDX- und SEQ-Systemen	
	3.3.1.3	Datenübertragung Transponder > Leser	. 70
	3.3.2	Oberflächenwellen-Transponder	
3.4	Near Fiel	ld Communication (NFC)	. 73
	3.4.1	Active Mode	. 74
	3.4.2	Passive Mode	. 75
4	Physikal	lische Grundlagen für RFID-Systeme	. 77
4.1	Magnetis	sches Feld	. 78
	4.1.1	Magnetische Feldstärke H	. 78
	4.1.1.1	Feldstärkeverlauf H(x) bei Leiterschleifen	. 79
	4.1.1.2	Optimierter Antennendurchmesser	. 81
	4.1.2	Magnetischer Fluss und magnetische Flussdichte	. 83
	4.1.3	Induktivität L	. 83
	4.1.3.1	Induktivität einer Leiterschleife	. 84
	4.1.4	Gegeninduktivität M	. 84
	4.1.5	Kopplungsfaktor k	. 86
	4.1.6	Induktionsgesetz	. 88
	4.1.7	Resonanz	. 90

	4.1.8	Praktischer Betrieb des Transponders	95
	4.1.8.1	Spannungsversorgung des Transponders	95
	4.1.8.2	Spannungsregelung	95
	4.1.9	Ansprechfeldstärke Hmin	97
	4.1.9.1	"Energiereichweite" von Transpondersystemen	100
	4.1.9.2	Ansprechbereich von Lesegeräten	102
	4.1.10	Gesamtsystem Transponder – Lesegerät	103
	4.1.10.1	Transformierte Transponderimpedanz ZT'	105
	4.1.10.2	Einflussgrößen von ZT'	108
	4.1.10.3	Lastmodulation	115
	4.1.11	Messung von Systemparametern	122
	4.1.11.1	Messung des Kopplungsfaktors k	122
	4.1.11.2	Messung von Transponderresonanzfrequenz und Gütefaktor	123
	4.1.12	Magnetische Werkstoffe	132
	4.1.12.1	Eigenschaften magnetischer Werkstoffe und Ferrite	132
	4.1.12.2	Ferritantennen in LF-Transpondern	133
	4.1.12.3	Ferritabschirmung in metallischer Umgebung	134
	4.1.12.4	Einbau von Transpondern in Metall	135
4.2	Elektroma	agnetische Wellen	137
	4.2.1	Entstehung elektromagnetischer Wellen	137
	4.2.1.1	Übergang vom Nah- zum Fernfeld bei Leiterschleifen	138
	4.2.2	Strahlungsdichte S	139
	4.2.3	Feldwellenwiderstand und Feldstärke E	140
	4.2.4	Polarisation elektromagnetischer Wellen	141
	4.2.4.1	Reflexion elektromagnetischer Wellen	142
	4.2.5	Antennen	144
	4.2.5.1	Gewinn und Richtwirkung	144
	4.2.5.2	EIRP und ERP	
	4.2.5.3	Eingangsimpedanz	146
	4.2.5.4	Wirksame Fläche und Rückstreuquerschnitt	147
	4.2.5.5	Effektive Länge	150
	4.2.5.6	Dipolantenne	151
	4.2.5.7	Yagi-Uda-Antenne	153
	4.2.5.8	Patch- oder Mikrostripantennen	153
	4.2.5.9	Schlitzantennen	156
	4.2.6	Praktischer Betrieb von Mikrowellentranspondern	
	4.2.6.1	Ersatzschaltbilder des Transponders	
	4.2.6.2	Spannungsversorgung passiver Transponder	158
	4.2.6.3	Spannungsversorgung aktiver Transponder	
	4.2.6.4	Reflexion und Auslöschung	
	4.2.6.5	Ansprechempfindlichkeit des Transponders	
	4.2.6.6	Modulierter Rückstreuquerschnitt	
	4.2.6.7	Lesereichweite	171

4.3	Oberflächenwellen		
	4.3.1	Entstehung einer Oberflächenwelle	174
	4.3.2	Reflexion einer Oberflächenwelle	176
	4.3.3	Funktionsschema von OFW-Transpondern	177
	4.3.4	Der Sensoreffekt	179
	4.3.4.1	Reflektive Verzögerungsleitung	181
	4.3.4.2	Resonante Sensoren	182
	4.3.4.3	Impedanzsensoren	184
	4.3.5	Geschaltete Sensoren	184
5	_	zbereiche und Funkzulassungsvorschriften	
5.1	Verwend	lete Frequenzbereiche	187
	5.1.1	Frequenzbereich 9 135 kHz	189
	5.1.2	Frequenzbereich 6,78 MHz (ISM)	191
	5.1.3	Frequenzbereich 13,56 MHz (ISM, SRD)	191
	5.1.4	Frequenzbereich 27,125 MHz (ISM)	191
	5.1.5	Frequenzbereich 40,680 MHz (ISM)	192
	5.1.6	Frequenzbereich 433,920 MHz (ISM)	192
	5.1.7	UHF-Frequenzbereich	193
	5.1.7.1	Frequenzbereich 865,0 MHz 868 MHz (SRD) in Europa	193
	5.1.7.2	Frequenzbereich 915 921 MHz (SRD) in Europa	194
	5.1.7.3	Frequenzbereich 915,0 MHz	194
	5.1.8	Frequenzbereich 2,45 GHz (ISM, SRD)	
	5.1.9	Frequenzbereich 5,8 GHz (ISM, SRD)	194
	5.1.10	Frequenzbereich 24,125 GHz (ISM)	195
	5.1.11	Auswahl der Frequenz für induktiv gekoppelte RFID-Systeme	195
5.2	Internation	onale Fernmeldeunion (ITU)	198
5.3	Europäis	che Zulassungsvorschriften	199
	5.3.1	CEPT/ERC REC 70-03	200
	5.3.1.1	Annex 1: Non-specific Short Range Devices	202
	5.3.1.2	Annex 4: Railway applications	202
	5.3.1.3	Annex 5: Road Transport & Traffic Telematics	203
	5.3.1.4	Annex 9: Inductive applications	204
	5.3.1.5	Annex 11: RFID applications	206
	5.3.2	Standardisierte Messverfahren	208
	5.3.2.1	Übergreifende Standards	208
	5.3.2.2	Anwendungsspezifische Messvorschriften	210
5.4	National	e Zulassungsvorschriften in Europa	210
	5.4.1	Bundesrepublik Deutschland	211
	5.4.1.1	Induktive Funkanwendungen	211
	5.4.1.2	RFID-Systeme im UHF-Bereich	213
5.5	National	e Zulassungsvorschriften	214
	5.5.1	USA	214

5.6	Vergleich nationaler Regulierungsvorschriften		216
	5.6.1	Umrechnung bei 13,56 MHz	216
	5.6.2	Umrechnung auf UHF	218
6	Codieru	ng und Modulation	219
6.1	Codierun	ng im Basisband	220
6.2	Digitale 1	Modulationsverfahren	222
	6.2.1	Amplitudentastung (ASK)	223
	6.2.2	2-FSK	225
	6.2.3	2-PSK	226
	6.2.4	Modulationsverfahren mit Hilfsträger	227
7	Datenint	tegrität	229
7.1	Fehlererk	kennende und -korrigierende Codes	229
	7.1.1	Das Prinzip der Codekonstruktion	231
	7.1.2	Eigenschaften von Codes	233
	7.1.3	Einfache Codes – die Paritätsprüfung	235
	7.1.4	Zyklische Codes	236
	7.1.4.1	CRC-Verfahren	237
	7.1.4.2	Hardware-Implementierung von CRC	240
	7.1.4.3	CRC-Verfahren bei RFID-Systemen	241
	7.1.5	Lineare Codes	242
	7.1.5.1	Hammingcode	243
	7.1.5.2	Hammingcode-Implementierung in ISO/IEC 14443	245
7.2	Vielfacha	zugriffsverfahren – Antikollision	250
	7.2.1	Raummultiplex – SDMA	253
	7.2.2	Frequenzmultiplex – FDMA	254
	7.2.3	Zeitmultiplex – TDMA	255
	7.2.4	Beispiele für Antikollisionsverfahren	257
	7.2.4.1	ALOHA-Verfahren	257
	7.2.4.2	Slotted-ALOHA-Verfahren	259
	7.2.4.3	Binary-Search-Algorithmus	263
8	Sicherhe	eit von RFID-Systemen	273
8.1	Angriffe	auf RFID-Systeme	274
	8.1.1	Angriffe auf den Transponder	275
	8.1.1.1	Dauerhaftes Zerstören des Transponders	275
	8.1.1.2	Abschirmen oder Verstimmen des Transponders	276
	8.1.1.3	Emulieren und Klonen eines Transponders	276
	8.1.2	Angriffe über das HF-Interface	278
	8.1.2.1	Abhören der Kommunikation	278
	8.1.2.2	Störsender	297
	8.1.2.3	Lesen mit vergrößerter Lesereichweite	298
	8.1.2.4	Transponder mit vergrößerter Reichweite	305

X Inhaltsverzeichnis

	8.1.2.5	Denial of Service-Angriff durch Blocker Tags	310
	8.1.2.6	Relay-Attack	312
8.2	Abwehr o	lurch kryptografische Maßnahmen	315
	8.2.1	Kryptografische Funktionen und Merkmale kryptografischer Verfahren .	317
	8.2.1.1	Hashfunktionen und MAC	318
	8.2.1.2	Blockchiffren	320
	8.2.1.3	Stromchiffren	326
	8.2.2	Kryptografische Protokolle	328
	8.2.2.1	Gegenseitige symmetrische Authentifizierung	329
	8.2.2.2	Authentifizierung mit abgeleiteten Schlüsseln	330
	8.2.2.3	Basic Access Control Protocol (BAC)	331
9	Normun	g	335
9.1	Tierident	ifikation	335
	9.1.1	ISO/IEC 11784 – Codestruktur	335
	9.1.2	ISO/IEC 11785 – Technisches Konzept	336
	9.1.2.1	Anforderungen	336
	9.1.2.2	Voll-/Halbduplex-System	338
	9.1.2.3	Sequentielles System	338
	9.1.3	ISO/IEC 14223 – Advanced Transponders	339
	9.1.3.1	Teil 1 – Air Interface	339
	9.1.3.2	Teil 2 – Code and Command Structure	
9.2	Kontaktlo	ose Chipkarten	343
	9.2.1	ISO/IEC 10536 – Close coupling Chipkarten	344
	9.2.2	ISO/IEC 14443 – Proximity coupling Chipkarten	344
	9.2.2.1	Physikalische Eigenschaften	345
	9.2.2.2	Energieübertragung und Signalinterface	347
	9.2.2.3	Initialisierung, Antikollision und Protokollaktivierung	362
	9.2.2.4	Datenübertragungsprotokoll	374
	9.2.3	ISO/IEC 15693 – Vicinity coupling Chipkarten	378
	9.2.3.1	Physical characteristics	379
	9.2.3.2	Air interface and initialization	379
	9.2.3.3	Anticollision and transmission protocol	382
	9.2.4	ISO/IEC 10373 – Prüfmethoden für Chipkarten	390
	9.2.4.1	Part 6 – Testverfahren für Proximity coupling Chipkarten	391
	9.2.4.2	Part 7 – Testverfahren für Vicinity coupling Chipkarten	397
9.3	ISO/IEC	69873 – Datenträger für Werk- und Spanzeuge	398
9.4	ISO/IEC	10374 – Containeridentifikation	398
9.5	VDI 4470	0 – Warensicherungssysteme	400
	9.5.1	Teil 1 – Kundenabnahmerichtlinien für Schleusensysteme	400
	9.5.1.1	Ermittlung der Fehlalarmquote	400
	9.5.1.2	Ermittlung der Detektionsrate	400
	9.5.1.3	Formblätter in VDI 4470	401
	9.5.2	Teil 2 – Kundenabnahmerichtlinien für Deaktivierungsanlagen	402

Güter- und	l Warenwirtschaft	. 402
9.6.1	ISO/IEC 18000 Reihe	. 402
9.6.1.1	Datennormen	. 402
9.6.1.2	Luftschnittstellennormen	. 405
9.6.1.3	Testnormen	. 408
9.6.2	GTAG Initiative	. 412
9.6.3	EPCglobal Network	. 412
9.6.3.1	Generation 2	. 414
9.6.3.2	Normen und Spezifikationen	. 415
9.6.3.3	Der Electronic Product Code (EPC)	. 416
9.6.3.4	Transponderklassen	. 419
9.6.3.5	Einführung in das EPC-Netzwerk	. 420
9.6.4	EPCglobal UHF AI Gen 2 / ISO/IEC 18000-6 Type C / ISO/IEC 18000-63 .	. 422
9.6.4.1	Kommunikationsprinzip	. 422
9.6.4.2	Kommunikation vom Lesegerät zum Transponder	. 423
9.6.4.3	Kommunikation vom Transponder zum Lesegerät	. 425
9.6.4.4	Dense Reader Mode, Signalspektrum und Funkzulassungen	. 428
9.6.4.5	Speicher	. 430
9.6.4.6	Session Flags	. 431
9.6.4.7	Kommandos	. 433
9.6.4.8	Ablauf der Kommunikation	. 439
9.6.4.9	Unterschiede zwischen EPCglobal UHF AI Gen 2 und	
	ISO/IEC 18000-6 Type C	. 442
9.6.4.10	Zusätzliches in ISO/IEC 18000-6 Type C	. 443
Das RFID	-Emblem	. 444
Europäisch	he Normen zum Schutz der Privatsphäre	. 447
Architekt	ur elektronischer Datenträger	449
10.1.1	•	
10.1.1.1		
10.1.1.2		
10.1.1.3		
10.1.2		
10.1.2.1	<u> </u>	
10.1.3		
10.1.3.1	-	
10.1.3.2		
10.1.3.3	Transponder mit Kryptofunktion	
10.1.3.4	Segmentierte Speicher	
10.1.3.5	• .	
10.1.3.6	Dual-port-EEPROM	
	9.6.1 9.6.1.1 9.6.1.2 9.6.1.3 9.6.2 9.6.3 9.6.3.1 9.6.3.2 9.6.3.3 9.6.3.4 9.6.3.5 9.6.4 9.6.4.1 9.6.4.2 9.6.4.3 9.6.4.5 9.6.4.6 9.6.4.7 9.6.4.8 9.6.4.9 9.6.4.10 Das RFID Europäisel Architekt Transpond 10.1.1 10.1.1.1 10.1.1.2 10.1.1.3 10.1.2.1 10.1.3.1 10.1.3.1 10.1.3.1 10.1.3.2 10.1.3.3 10.1.3.4 10.1.3.5	9.6.1.1 Datennormen 9.6.1.2 Luftschnittstellennormen 9.6.1.3 Testnormen 9.6.2 GTAG Initiative 9.6.3 EPCglobal Network 9.6.3.1 Generation 2 9.6.3.2 Normen und Spezifikationen 9.6.3.3 Der Electronic Product Code (EPC) 9.6.3.4 Transponderklassen 9.6.3.5 Einführung in das EPC-Netzwerk 9.6.4 EPCglobal UHF AI Gen 2 / ISO/IEC 18000-6 Type C / ISO/IEC 18000-63 9.6.4.1 Kommunikation sprinzip 9.6.4.2 Kommunikation vom Lesegerät zum Transponder 9.6.4.3 Kommunikation vom Transponder zum Lesegerät 9.6.4.4 Dense Reader Mode, Signalspektrum und Funkzulassungen 9.6.4.5 Speicher 9.6.4.6 Session Flags 9.6.4.7 Kommandos 9.6.4.8 Ablauf der Kommunikation 9.6.4.9 Unterschiede zwischen EPCglobal UHF AI Gen 2 und ISO/IEC 18000-6 Type C 9.6.4.10 Zusätzliches in ISO/IEC 18000-6 Type C Das RFID-Emblem Europäische Normen zum Schutz der Privatsphäre Architektur elektronischer Datenträger Transponder mit Speicherfunktion 10.1.1 HF-Interface 10.1.1.1 Schaltungsbeispiel – Lastmodulation mit Hilfsträger 10.1.1.2 Schaltungsbeispiel – Lastmodulation mit Hilfsträger 10.1.1.3 Simulation eines ISO/IEC 14443 kompatiblen HF-Frontends 10.1.2 Adress- und Sicherheitslogik 10.1.2.1 State-Machine 10.1.3 Speicherarchitektur 10.1.3 Speicherarchitektur 10.1.3 Read-only-Transponder 10.1.3 Speicherarchitektur 10.1.3 Read-only-Transponder 10.1.3 Segmentierte Speicher 10.1.3 MIFARE®-Applikationsverzeichnis

XII Inhaltsverzeichnis

10.2	Mikropro	zessoren	471
	10.2.1	Dual Interface Karte	472
	10.2.1.1	MIFARE plus	474
	10.2.1.2	Moderne Konzepte für die Dual Interface Card	475
10.3	Speichert	echnologie	477
	10.3.1	RAM	478
	10.3.2	EEPROM	478
	10.3.3	FRAM	480
	10.3.4	Leistungsvergleich FRAM – EEPROM	481
10.4	Messung	physikalischer Größen	482
	10.4.1	Transponder mit Sensorfunktionen	482
	10.4.2	Messungen mit Mikrowellentranspondern	484
	10.4.3	Sensoreffekt bei Oberflächenwellen-Transpondern	485
11	Lesegerä	ite	489
11.1	Datenflus	ss in einer Applikation	489
11.2	Kompone	enten eines Lesegerätes	490
	11.2.1	HF-Interface	491
	11.2.1.1	Induktiv gekoppeltes System, FDX/HDX	491
	11.2.1.2	Mikrowellen-System – Halbduplex	492
	11.2.1.3	Sequentielle Systeme – SEQ	494
	11.2.1.4	Mikrowellen-System für OFW-Transponder	495
	11.2.2	Steuerung	496
11.3	Integrierte	e Leser-ICs	
	11.3.1	Integriertes HF-Interface	498
	11.3.2	Single Chip Reader IC	501
11.4	Anschluss	s von Antennen für induktiv gekoppelte Systeme	506
	11.4.1	Anschaltung mit Stromanpassung	507
	11.4.2	Speisung über Koaxialkabel	508
	11.4.3	Einfluss des Gütefaktors Q	512
11.5	Ausführu	ngsformen von Lesegeräten	513
	11.5.1	OEM-Lesegeräte	513
	11.5.2	Lesegeräte für industriellen Einsatz	514
	11.5.3	Portable Lesegeräte	515
11.6	Near Field	d Communication	516
	11.6.1	Secure-NFC	
	11.6.1.1	Single Wire Protokoll	
	11.6.1.2	NFC Wired Interface	522
12	Messtech	nnik für RFID-Systeme	525
12.1	HF-Messt	technik für Proximity-Systeme	
	12.1.1	Kontaktbasierte Messungen	526
	12.1.1.1	Messung der Transponderchip-Impedanz	526

Inhaltsverzeichnis XIII

	12.1.2	Kontaktlos-Messungen	. 530
	12.1.2.1	Konzept zur Messung von Proximity-Karten	. 530
	12.1.2.2	Aufbau zur Messung von Proximity-Transpondern	. 532
	12.1.2.3	Aufbau zur Messung von Proximity-Lesegeräten	. 536
	12.1.2.4	Charakterisierung und Evaluierung	. 537
	12.1.3	Ausgewählte Messungen an Proximity-Smartcards	. 538
	12.1.3.1	Messung der Rückwirkung, Card Loading Effect	. 538
	12.1.3.2	Messung der Ansprechfeldstärke	. 539
	12.1.3.3	Messung der Modulation	. 541
	12.1.3.4	Messung der Zeiten in der sequentiellen Kommunikation	. 543
	12.1.3.5	Messung der Karten-Rückmodulation	. 545
	12.1.3.6	Messung ungewollter Störungen (EMD)	. 547
	12.1.3.7	Prüfung der maximal verkraftbaren Feldstärke (maximum alternating field)	. 548
	12.1.3.8	Zusammenfassung der Transponder-Antennenklassen	. 549
	12.1.4	Ausgewählte Messungen an Proximity-Readern	. 550
	12.1.4.1	Messung der Feldstärke des Lesegeräts	. 550
	12.1.4.2	Messung der Modulationseigenschaften	. 552
	12.1.4.3	Messung der Empfindlichkeit auf Lastmodulation	. 553
	12.1.4.4	Messung der EMD	. 556
12.2	HF-Messte	echnik für UHF-Systeme	. 556
	12.2.1	Prolog	. 556
	12.2.1.1	Unterschiede zwischen LF, HF und UHF	. 556
	12.2.1.2	Allgemeiner Ansatz für den Testablauf	. 557
	12.2.1.3	Einflussgrößen und Störungen	. 557
	12.2.2	Signalstrecke und Umgebungseinflüsse	. 558
	12.2.3	Testverfahren	. 559
	12.2.3.1	Testverfahren für die Systemleistung – ISO18046-1	. 559
	12.2.3.2	Testverfahren für die Leistung des Abfragesenders ISO18046-2	. 562
	12.2.3.3	Testverfahren für UHF-Tags / Transponder ISO18046-3	. 562
	12.2.4	UHF-Messtechnik – Gerätetechnik	. 564
	12.2.4.1	Standardgeräte	. 564
	12.2.4.2	Spezialgeräte für UHF-Messtechnik	. 565
	12.2.5	Praktische RFID-Messtechnik im Labor	. 567
	12.2.5.1	Fallbeispiel: Transponder	. 567
	12.2.5.2	Fallbeispiel: Population von Transpondern	. 570
	12.2.6	Fazit	. 572
13	Herstellu	ng von Transpondern und kontaktlosen Chipkarten	573
13.1		g des integrierten Schaltkreises (Chip)	
	13.1.1	Das Halbleitermaterial	. 574
	13.1.2	Herstellung eines integrierten Schaltkreises	. 576

	13.1.2.1	Vorbereitung des Ausgangsmaterials	576
	13.1.2.2	Züchten des Kristalls	576
	13.1.2.3	Herstellung der Scheiben (Wafer)	577
	13.1.2.4	Aufbringung der integrierten Schaltungsstruktur	578
	13.1.3	Test der integrierten Schaltkreise	579
	13.1.4	Sägen des Wafer	580
	13.1.5	Mögliche Lieferformen	581
	13.1.6	Weitere Verpackung	581
13.2	Antennen	herstellung	582
	13.2.1	Wickeltechnik mit Kern	582
	13.2.2	Wickeltechnik mit Luftspule	582
	13.2.3	Verlegetechnik	584
	13.2.4	Siebdrucktechnik	585
	13.2.5	Ätztechnik	586
	13.2.6	Stanztechnik	587
13.3	Kontaktie	rverfahren	587
	13.3.1	Kontaktierverfahren für Halbleiterchips im Gehäuse	587
	13.3.1.1	Vorbereitung – Montage des Chips im Gehäuse	588
	13.3.1.2	Löttechnik	588
	13.3.1.3	Klebe- und Schneid-Klemm-Technik	589
	13.3.2	Kontaktierverfahren für unverpackte Halbleiterchip	590
	13.3.2.1	Vorbereitung von Wafer Bumpen	590
	13.3.2.2	Flip Chip-Montage	591
	13.3.2.3	Verbindungstechnik Schweißen	593
13.4	Spezielle	Bauformen	595
	13.4.1	Glastransponder	595
	13.4.2	Plastiktransponder	597
	13.4.3	Fertigung von Inlays	598
	13.4.4	Kontaktlose Chipkarten	599
	13.4.4.1	Zusammentragen der Folien	599
	13.4.4.2	Laminieren	600
	13.4.5	Etiketten	601
	13.4.5.1	Herstellung	601
	13.4.5.2	Drucktechnik in der Etikettenfertigung	603
13.5	Test in de	r Fertigung	604
	13.5.1	Prozessparameter	604
	13.5.1.1	Abschertest (Shear Test)	604
	13.5.1.2	Rollentest für Inlay und Etiketten	605
	13.5.2	Messung der HF-Parameter	605
	13.5.2.1	Anforderungen an den Test	606
	13.5.2.2	Test von LF- und HF-Transpondern	606

	13.5.2.3	Test von UHF-Transpondern	606
	13.5.2.4	Behandlung der Schlechtteile	608
	13.5.3	Test der Produkteigenschaften	608
	13.5.3.1	Allgemeine Zuverlässigkeitsprüfungen	608
13.6	Antennen	design für RFID-Systeme	609
	13.6.1	Eigenschaften von Schleifenantennen	609
	13.6.1.1	Impedanz der Antenne	611
	13.6.1.2	Resonanzfrequenz und Güte	614
	13.6.1.3	Messung der Werte des Antennen-Ersatzschaltbildes	615
	13.6.1.4	Abhängigkeiten des Antennen-Ersatzschaltbildes	616
	13.6.2	Design von Loop-Antennen für Kontaktlos-Karten	618
	13.6.2.1	Konzept zum Design	618
	13.6.2.2	Induktivität	619
	13.6.2.3	Wirkwiderstand	621
	13.6.2.4	Kapazität	622
	13.6.2.5	Einfluss des Antennen-Resonanzkreises auf die Performance	623
14	Anwendu	ıngsbeispiele	625
14.1	Kontaktlo	se Chipkarten	625
14.2	Öffentlich	ner Nahverkehr	626
	14.2.1	Ausgangssituation	626
	14.2.2	Anforderungen	627
	14.2.2.1	Transaktionszeit	627
	14.2.2.2	Witterungsbeständigkeit, Lebensdauer, Bedienkomfort	628
	14.2.3	Vorteile durch den Einsatz von RFID-Systemen	629
	14.2.4	Tarifmodelle mit elektronischer Abrechnung	630
	14.2.5	Marktpotenzial	630
	14.2.6	Projektbeispiele	631
	14.2.6.1	Korea – Seoul	631
	14.2.6.2	Deutschland – Lüneburg, Oldenburg	633
	14.2.6.3	EU-Projekte - "ICARE" und "CALYPSO"	635
14.3	Kontaktlo	ser Zahlungsverkehr	638
	14.3.1	MasterCard® Pay Pass	641
	14.3.2	ExpressPay von American Express®	641
	14.3.3	Visa® Contactless	641
	14.3.4	ExxonMobil Speedpass	641
14.4	NFC-Anv	vendungen	642
14.5	Elektronis	scher Reisepass und nationale eID-Karten (eMRTD)	648
14.6	Ski-Ticke	ting	655
14.7	Zutrittsko	ntrolle	657
	14.7.1	Online-Systeme	657
	14.7.2	Offline-Systeme	658
	14.7.3	Transponder	660

14.8	Verkehrss	ysteme	. 661
	14.8.1	Eurobalise S21	. 661
	14.8.2	Internationaler Containerverkehr	. 663
14.9	Tieridentif	ikation	. 664
	14.9.1	Rinderhaltung	. 664
	14.9.2	Brieftauben-Preisflug	. 670
14.10	Elektronis	che Wegfahrsperre	. 672
	14.10.1	Funktionsweise der Wegfahrsperre	. 672
	14.10.2	Kurze Erfolgsgeschichte	. 675
	14.10.3	Zukunftsaussichten	. 676
14.11	Behälterid	entifikation	. 677
	14.11.1	Gasflaschen und Chemikalienbehälter	. 677
	14.11.2	Abfallentsorgung	. 679
14.12	Sportliche	Veranstaltungen	. 681
14.13	Industriea	utomation	. 683
	14.13.1	Werkzeugidentifikation	. 683
	14.13.2	Industrielle Fertigung	. 686
	14.13.2.1	Zentrale Steuerung	. 687
	14.13.2.2	Dezentrale Steuerung	. 688
	14.13.2.3	Vorteile durch den Einsatz von RFID-Systemen	. 689
	14.13.2.4	Auswahl geeigneter RFID-Systeme	. 689
	14.13.2.5	Projektbeispiele	. 691
14.14	Medizinis	che Anwendungen	. 694
15	Anhang		697
15.1	Die Autore	en	. 697
15.2	Verbände	und Fachzeitschriften	. 701
	15.2.1	Industrieverbände	. 701
	15.2.2	Fachzeitschriften	. 702
15.3	Relevante	Normen und Vorschriften	. 703
	15.3.1	Normungsgremien	. 703
	15.3.2	Normenliste	. 704
	15.3.3	Bezugsquellen für Normen und Vorschriften	.713
15.4	Literatur		.714
15.5	Platinenla	youts	. 729
	15.5.1	Testkarte nach ISO 14443	. 729
	15.5.2	Feldgeneratorspule	. 733
	15.5.3	Lesegerät für 13,56 MHz	
16	Dogiston		741

Vorwort zur 7. Auflage

Dieses Buch richtet sich an die verschiedensten Leser. Zunächst an Ingenieure und Studenten, die zum ersten Mal mit der RFID-Technologie konfrontiert werden. Für sie gibt es einige grundlegende Kapitel über die Funktionsweise und die physikalischen sowie datentechnischen Grundlagen der RFID-Technik. Darüber hinaus richtet sich das Buch an den Praktiker, der sich als Anwender möglichst umfassend und konzentriert einen Überblick über die verschiedensten RFID-Technologien, die gesetzlichen Randbedingungen oder die Einsatzmöglichkeiten verschaffen möchte bzw. muss.

Zwar existiert eine schier unüberschaubare Fülle von Einzelbeiträgen in der Literatur zu diesem Themenbereich, aber alle diese "verteilten" Informationen im Bedarfsfalle zusammenzutragen, ist sehr mühsam und zeitaufwändig, wie auch die Recherchen zu jeder Auflage dieses Buchs aufs Neue beweisen. Dieses Buch soll daher auch eine Lücke im Literaturangebot über RFID-Systeme schließen. Wie groß der Bedarf an technisch fundierter Literatur in diesem Fachbereich tatsächlich ist, zeigt die erfreuliche Tatsache, dass das vorliegende Buch mittlerweile in sieben Sprachen¹ erschienen ist.

Anhand der vielen Bilder und Zeichnungen will dieses Buch eine im wahrsten Sinn des Wortes anschauliche Darstellung der RFID-Technologie geben. Einen besonderen Schwerpunkt stellen dabei die physikalischen Grundlagen dar, welche aus diesem Grunde auch das mit Abstand umfangreichste Kapitel bilden. Besonderer Wert wurde aber auch auf das Verständnis der grundlegenden Konzepte der Datenträger und Lesegeräte, soie der relevanten Normen und funktechnischen Regulierungsvorschriften gelegt. In den letzten Jahren rückt auch die Sicherheit von RFID-Systemen immer mehr in den Vordergrund. Angriffsmöglichkeiten und Abwehrmaßnahmen nehmen daher auch in diesem Buch einen immer größeren Platz ein.

Auch wenn sich der RFID-Hype, den wir in den Jahren nach 2000 erlebt haben, mittlerweile etwas gelegt hat, so schreitet die technologische Entwicklung auf dem Gebiet der RFID-Technologie noch immer so schnell voran, dass ein Buch wie dieses zwar eine allgemeine Wissensgrundlage bilden kann, aber nicht dynamisch genug ist, um auf die neuesten Trends zu demnächst erscheinenden Produkten, Normen und Vorschriften eingehen zu können. Auch im Bereich der Anwendungsbeispiele wird es bei der zunehmenden Verbreitung der RFID-Technologie immer schwieriger, den Überblick zu behalten. In der Presse ist fast wöchentlich über neue Einsatzmöglichkeiten für RFID-Systeme zu lesen. Vor allem das Thema NFC, eine Variante der Proximity-RFID-Systeme, bei denen das Endgerät zwischen der Funktion eines Datenträgers und der eines Lesegeräts beliebig wechseln kann, erfährt derzeit in den Medien als neue Schnittstelle für Mobiltelefone eine hohe Aufmerksamkeit. Für Hinweise und Anregungen zu neuen Themen – insbesondere aus dem Kreis der Industrie – bin

Weitere Informationen zur deutschen Ausgabe des RFID-Handbuchs sowie zu den Übersetzungen können Sie der Homepage zum Buch http://RFID-handbook.com entnehmen. Derzeit ist das Buch in folgenden Sprachen erhältlich: Deutsch, Englisch, Japanisch, Chinesisch, Koreanisch, Russisch und in chinesischer Langschrift (für Taiwan).

XVIII Vorwort

ich deshalb sehr dankbar. Die zugrunde liegenden Konzepte und physikalischen Grundlagen bleiben jedoch erhalten und bilden eine gute Voraussetzung für das Verständnis der aktuellen Entwicklung.

Ein ganz besonderes Ereignis war für mich die Verleihung des Fraunhofer Smart-Card-Preises 2008, der jährlich für besondere Verdienste in der Chipkartentechnologie vergeben wird, und diesmal sowohl an das ebenso bekannte Chipkartenhandbuch meiner beiden Kollegen Rankl und Effing als auch an das RFID-Handbuch ging. Die Preisverleihung fand anlässlich des 18. Smart-Card-Workshops des Fraunhofer Instituts für Sichere Informationstechnologien (SIT) am 5. Februar 2008 in Darmstadt statt. Zu diesem Zeitpunkt war das RFID-Handbuch bereits zehn Jahre erfolgreich etabliert. Die erste Ausgabe erschien im März 1998 in deutscher Sprache mit einem Umfang von 280 Seiten. War RFID damals noch eine Nischentechnologie und in der Öffentlichkeit kaum näher bekannt, so hat sich dieses Bild mittlerweile sehr gewandelt. RFID ist zu einem festen Begriff geworden, und durch Anwendungen wie den elektronischen Reisepass oder den elektronischen Produktcode (EPC) wurde auch die breite Öffentlichkeit auf diese Technologie aufmerksam.

Auf Grund der zunehmend komplexen Vielfalt der RFID-Systeme sowie der immer schnelleren technischen Weiterentwicklung dieser Systeme wurde es im Laufe der Jahre immer schwieriger, das Thema als Einzelautor in der notwendigen Tiefe zu bearbeiten. Um auch in Zukunft die RFID-Technologie möglichst umfassend und kompetent in einem Buch zusammenfassen zu können, wurde ab der 6. Auflage ein neuer Weg eingeschlagen. Einige der Kapitel wurden von Co-Autoren übernommen und werden auch in der Zukunft weitergeführt. An der vorliegenden Auflage haben Michael E. Wernle (Meshed Systems, München), Michael Gebhart (NXP, Graz), Josef Preishuber-Pflügl (CISC, Klagenfurt), Erich Reisenhofer (Infineon, Graz) und Florian Peters (Bundesdruckerei, Berlin) mitgearbeitet.

An dieser Stelle möchte ich mich auch noch bei allen Firmen bedanken, die mit zahlreichen technischen Datenblättern, Vortragsmanuskripten, Zeichnungen und Fotografien zum Gelingen des Werkes beigetragen haben.

München, im Sommer 2015

Klaus Finkenzeller

3 Grundlegende Funktionsweise

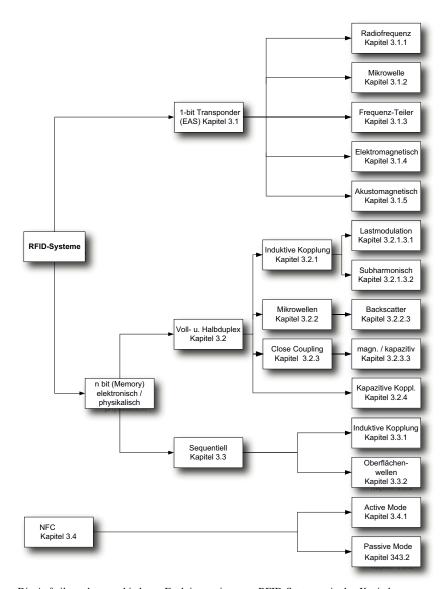


Abb. 3.1 Die Aufteilung der verschiedenen Funktionsweisen von RFID-Systemen in den Kapiteln.

Dieses Kapitel beschreibt das grundsätzliche Zusammenwirken zwischen dem Transponder und einem Lesegerät, insbesondere die Spannungsversorgung des Transponders und die Datenübertragung vom Transponder zum Lesegerät. Eine tiefergehende Beschreibung der physikalischen Zusammenhänge sowie mathematische Modelle für induktive Kopplung oder Backscatter-Systeme sind dem Kap. 4 "Physikalische Grundlagen für RFID-Systeme", S. 77 zu entnehmen.

3.1 1-bit-Transponder

Ein Bit stellt die kleinste darstellbare Informationseinheit dar und kennt nur zwei Zustände: "1" oder "0". Für Systeme mit *1-bit-Transponder* bedeutet dies, dass nur zwei Systemzustände darstellbar sind: "Transponder im Ansprechbereich" oder "**kein** Transponder im Ansprechbereich". Trotz dieser Einschränkung sind 1-bit-Transponder sehr weit verbreitet – ihr Haupteinsatzgebiet sind elektronische *Diebstahlsicherungen* im Warenhaus (*EAS* – electronic article surveillance; elektronische Artikelsicherung).

Eine elektronische Artikelsicherung besteht aus folgenden Komponenten: den Antennen eines "Lesegerätes" bzw. Detektors, dem *Sicherungsmittel* oder *Etikett*, sowie optional einem *Deaktivator* zur Entschärfung nach dem Bezahlen. Bei modernen Systemen erfolgt die Entwertung gleichzeitig mit der Registrierung des Preiscodes an der Kasse. Manche Systeme verfügen auch noch über einen *Aktivator*, mit dem ein Sicherungsmittel nach Entschärfung wieder reaktiviert werden kann [gillert]. Wesentliches Leistungsmerkmal aller Systeme ist die Erkennungs- oder *Detektionsrate* in Abhängigkeit von der Durchgangsbreite (maximaler Abstand zwischen Transponder und Detektorantenne).

Die Vorgehensweise bei der Abnahme und Überprüfung installierter Artikelsicherungssysteme ist in der Richtlinie *VDI 4470* mit dem Titel "Warensicherungssysteme – Kundenabnahmerichtlinie für Schleusensysteme" festgelegt. Diese Richtlinie enthält Definitionen und Testverfahren zur Ermittlung von Detektionsrate und Fehlalarmquote. Sie kann dem Einzelhandel als Grundlage für Kaufverträge oder zur laufenden Leistungskontrolle installierter Systeme dienen. Für den Produkthersteller stellt die Kundenabnahmerichtlinie ein wirkungsvolles Kontrollinstrument bei der Entwicklung und Optimierung von Integrationslösungen für Sicherungsprojekte dar [nach VDI 4470].

3.1.1 Radiofrequenz

Das Radiofrequenz (RF)-Verfahren arbeitet mit L-C-Schwingkreisen als Sicherungsmittel, welche auf eine definierte Resonanzfrequenz f_R abgeglichen sind. Ursprünglich wurden dazu Induktivitäten aus gewickeltem Kupferlackdraht mit angelötetem Kondensator im Kunststoffgehäuse (Hartetikette) verwendet. Heute benutzt man dazu zwischen Folie geätzte Spulen als Aufklebeschildchen. Damit der Dämpfungswiderstand nicht zu groß, und damit die Güte der Schwingkreise nicht zu klein wird, muss die Dicke der Aluminium-Leiterbahnen auf den 25µm starken Polyethylen-Folie wenigstens 50µm betragen [jörn]. Zur Herstellung der Kondensatorplatten werden 10µm dicke Zwischenfolien verwendet.

Durch das Lesegerät (Detektionsgerät) wird ein magnetisches Wechselfeld im Radiofrequenzbereich erzeugt (siehe Abbildung 3.2). Nähert man den L-C-Schwingkreis dem magnetischem Wechselfeld, so wird über die Spule des Schwingkreises Energie aus dem Wechselfeld in den Schwingkreis eingekoppelt (Induktionsgesetz). Entspricht nun die Frequenz f_G des Wechselfeldes der Resonanzfrequenz f_R des L-C-Schwingkreises, so wird der Schwingkreis zu einer *Resonanzschwingung* angeregt. Der dadurch im Schwingkreis fließende Strom wirkt seiner Ursache, also dem von außen einwirkenden magnetischem Wech-

selfeld entgegen. (siehe Kap. 4.1.10.1 "Transformierte Transponderimpedanz ZT"", S. 105). Dieser Effekt macht sich in einer kleinen Änderung des Spannungsabfalles über der Generatorspule des Transmitters bemerkbar und führt letztendlich zu einer Abschwächung der messbaren magnetischen Feldstärke. Auch in einer optionalen Sensorspule ist eine Änderung der induzierten Spannung messbar, sobald ein resonanter Schwingkreis in das magnetische Feld der Generatorspule eingebracht wird.

Die relative Stärke dieser Änderung ist abhängig vom Abstand der beiden Spulen zueinander (*Generatorspule* – Sicherungsmittel, Sicherungsmittel – *Sensorspule*) sowie der Güte Q des angeregten Schwingkreises (im Sicherungsmittel).

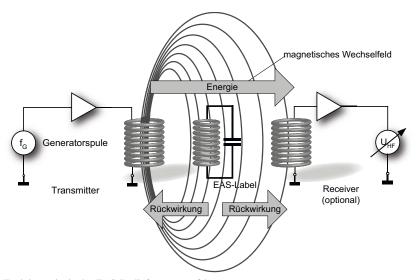


Abb. 3.2 Funktionsprinzip des EAS-Radiofrequenzverfahrens.

Die relative Stärke der Spannungsänderungen an Generator- und Sensorspule ist in der Regel sehr gering und damit schwierig zu erkennen. Um eine sichere Erkennung der Sicherungsmittel zu erreichen, ist es aber notwendig, ein möglichst ausgeprägtes Signal zu erhalten. Dies wird durch einen kleinen Trick erreicht: Die Frequenz des erzeugten Magnetfeldes ist nicht konstant, sondern wird "gewobbelt". Dabei überstreicht die Generatorfrequenz fortlaufend den Bereich zwischen zwei Eckfrequenzen. Als Frequenzbereich steht den gewobbelten Systemen dazu der Bereich 8,2 MHz ±10% zur Verfügung [jörn].

Immer dann, wenn die gewobbelte Generatorfrequenz genau die Resonanzfrequenz des Schwingkreises (im Transponder) trifft, beginnt dieser einzuschwingen und erzeugt dadurch einen ausgeprägten Dip der Spannungen an der Genarator- sowie der Sensorspule. Auch Frequenztoleranzen der Sicherungsmittel, bedingt durch Fertigungstoleranzen oder metallische Umgebung, spielen durch das "Abtasten" eines ganzen Frequenzbereiches keine Rolle mehr.

Da die Etiketten an der Kasse nicht abgelöst werden, müssen sie so verändert werden, dass ein Ansprechen der Diebstahlsicherung ausgeschlossen ist. Hierzu werden die gesicherten Produkte von der Kassiererin auf ein Gerät gelegt – den *Deaktivator* –, das ein ausreichend

starkes Magnetfeld erzeugt, um mit der induzierten Spannung den Folienkondensator des Transponders zu zerstören. Die Kondensatoren besitzen dazu eigens eingebaute Sollkurzschlussstellen, so genannte *Dimples*. Das Durchschlagen der Kondensatoren ist irreversibel und verstimmt den Schwingkreis so stark, dass dieser durch das *Wobbelsignal* nicht mehr angeregt werden kann.

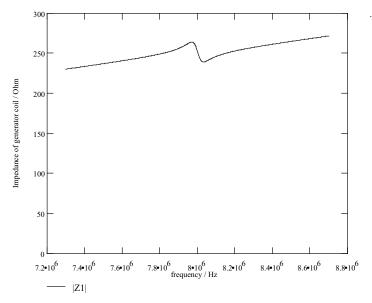


Abb. 3.3 Auftreten eines Impedanz-,,Dip" an der Generatorspule an der Resonanzfrequenz des Sicherungsmittels (Q=90, k=1%). Die Frequenz f_G des Generators wird kontinuierlich zwischen zwei Eckfrequenzen gewobbelt. Ein RF-Etikett im Feld des Generators erzeugt auf seiner Resonanzfrequenz f_R einen ausgeprägten Dip.

Zur Erzeugung des benötigten magnetischen Wechselfeldes im Detektionsbereich der Sicherungsanlage werden großflächige *Rahmenantennen* eingesetzt. Die in Säulen integrierten Rahmenantennen werden zu Durchgangsschleusen kombiniert. Die klassische Bauform, bekannt aus jedem größeren Kaufhaus, ist in Abbildung 3.4 dargestellt. Mit dem RF-Verfahren werden Schleusenbreiten von bis zu 2 m erreicht. Bei der relativ niedrigen Detektionsrate von ca. 70% [gillert] zeigt sich ein relativ starker Einfluss von bestimmten Produktmaterialien. Vor allem Metalle (z. B. Konservendosen) beeinflussen die Resonanzfrequenz der Etiketten sowie die Kopplung zur Detektorspule und beeinflussen damit die Detektionsrate negativ. Um die genannte Schleusenbreite und Detektionsrate zu erreichen, müssen Etiketten von 50 x 50 mm zum Einsatz kommen.

Tabelle 3.1: Typische Systemparameter für RF-Systeme [VDI 4471].

Gütefaktor Q der Sicherungsmittel	> 60 80
Minimale Deaktivierungsfeldstärke ${\rm H}_{\rm D}$	1,5 A/m
Maximale Feldstärke im Detektionsbereich	0,9 A/m

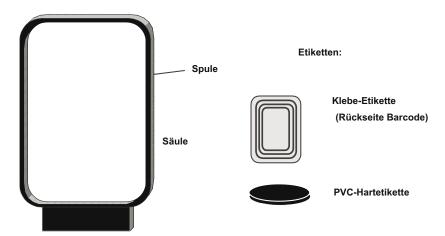


Abb. 3.4 links: Typische Rahmenantenne eines RF-Systems (Höhe 1,20 .. 1,60 m); rechts: Bauformen von Etiketten.

Eine große Herausforderung für die Systemhersteller besteht in der Eigenschaft verschiedener Produkte, ebenfalls Resonanzfrequenzen aufzuweisen (z. B. Kabeltrommeln). Liegen diese Resonanzfrequenzen innerhalb des Wobbelbereiches 8,2 MHz ±10%, werden unweigerlich Fehlalarme ausgelöst.

Tabelle 3.2: Frequenzbereiche unterschiedlicher RF-Sicherungsanalgen [plotzke].

	Anlage 1	Anlage 2	Anlage 3	Anlage 4
Frequenz/MHz:	1,86 – 2,18	7,44 – 8,73	7,30 – 8,70	7,40 – 8,60
Wobbelfrequenz/Hz:	141	141	85	85

3.1.2 Mikrowelle

EAS-Systeme im *Mikrowellenbereich* nutzen die Entstehung von Harmonischen, an Bauteilen mit nichtlinearer Kennlinie (z. B. Dioden). Unter der *Harmonischen* einer sinusförmigen Spannung A mit definierter Frequenz f_A versteht man eine sinusförmige Spannung B, deren Frequenz fB ein ganzzahliges Vielfaches der Frequenz f_A darstellt. Die Subharmonischen der Frequenz f_A sind also die Frequenzen $2f_A$, $3f_A$, $4f_A$ usw. Die N-fache der Ausgangsfrequenz wird in der Funktechnik als Nte Harmonische (Nte Oberwelle) bezeichnet, die Ausgangsfrequenz selbst wird als Grundwelle oder erste Harmonische bezeichnet.

Prinzipiell erzeugt jeder Zweipol mit nichtlinearer Charakteristik Harmonische zur Grundschwingung. Bei *nichtlinearen Widerständen* wird aber Energie verbraucht, sodass nur ein geringer Teil der Grundwellenleistung in die Oberschwingung umgesetzt wird. Unter günstigsten Bedingungen ist bei der Vervielfachung von f auf n·f der Wirkungsgrad $\eta = 1/n^2$. Benutzt man zur Vervielfachung hingegen nichtlineare Energiespeicher, hat man im Idealfall keine Verluste [fleckner].

Zur Frequenzvervielfachung eignen sich *Kapazitätsdioden* als nichtlineare Energiespeicher besonders gut. Anzahl und Stärke der entstehenden Harmonischen wird durch das *Dotierungsprofil* bzw. die Steilheit der Kennlinie der Kapazitätsdiode bestimmt. Ein Maß für die Steilheit (= Kapazitäts-Spannungs-Kennlinie) ist der Exponent n (auch γ). Dieser beträgt für einfach diffundierte Dioden 0,33 (z. B. BA110), für legierte Dioden 0,5 und für Tuner Dioden mit hyperabruptem PN-Übergang etwa 0,75 (z. B. BB 141) [itt75].

Legierte Kapazitätsdioden weisen einen quadratischen Verlauf der Kapazitäts-Spannungs-Kennlinie auf und eignen sich deshalb vor allem zum Verdoppeln von Frequenzen. Mit einfach diffundierten Kapazitätsdioden lassen sich sehr gut höhere Harmonische erzeugen [fleckner].

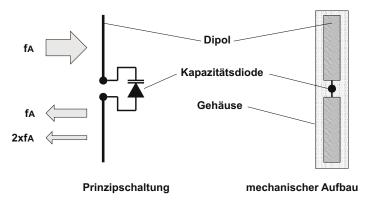


Abb. 3.5 Prinzipschaltbild und typische Bauform eines Mikrowellen-Etiketts.

Der Aufbau eines 1-bit-Transponders zur Erzeugung von Harmonischen ist ausgesprochen einfach: An den Fußpunkt eines auf die Grundwelle abgeglichenen *Dipols* wird eine Kapazitätsdiode geschaltet. Bei einer Grundwellenfrequenz von 2,45 GHz ergibt sich für den Dipol eine Gesamtlänge von 6 cm. Als Grundwellenfrequenz werden 915 MHz (außerhalb Europa), 2,45 GHz oder 5,6 GHz verwendet. Befindet sich der Transponder in der Strahlungskeule des Senders, so werden durch den Stromfluss in der Diode Harmonische der Grundwelle erzeugt und wieder abgestrahlt. Besonders ausgeprägte Signale erhält man je nach verwendetem Diodentyp auf der 2-fachen oder 3-fachen der Grundwelle.

In Kunststoff vergossene Transponder dieser Bauart (Hartetiketten) werden vor allem zur Sicherung von Textilien eingesetzt. An der Kasse werden die Etiketten beim Bezahlen abgenommen und wiederverwendet.

In Abbildung 3.6 wird ein Transponder in die Strahlungskeule eines Mikrowellensenders mit 2,45 GHz gebracht. Die an der Diodenkennlinie des Transponders erzeugte zweite Harmonische von 4,90 GHz wird wieder abgestrahlt und von einem Empfänger detektiert, der auf genau diese Frequenz abgeglichen wurde. Das Eintreffen eines Signals auf Frequenz der 2. Harmonischen kann dann zum Beispiel das Auslösen einer Alarmanlage bewirken.

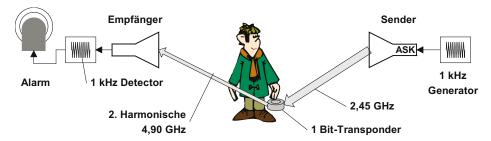


Abb. 3.6 Mikrowellen-Etikett im Ansprechbereich eines Detektors.

Wird die Grundwelle in ihrer Amplitude oder Frequenz moduliert (ASK, FSK), so ist dieselbe Modulation auch in allen Harmonischen enthalten. Dies kann zur Unterscheidung von "Stör"- und "Nutz"-Signalen eingesetzt werden, womit sich Fehlalarme durch Fremdsignale weitestgehend ausschließen lassen. In obigem Beispiel modulieren wir die Amplitude der Grundwelle mit einem Signal von 1 kHz (100% ASK). Auch die am Transponder entstandene 2. Oberwelle ist mit 1 kHz ASK moduliert. Im Empfänger wird das Empfangssignal demoduliert und einem 1-kHz-Detektor zugeführt. Zufällig auftretende Störsignale auf der Empfangsfrequenz 4,90 GHz können dann keinen Fehlalarm auslösen, da diese in der Regel nicht oder anders moduliert sind.

3.1.3 Frequenzteiler

Dieses Verfahren arbeitet im Langwellenbereich bei 100 ... 135,5 kHz. Die Sicherungsetiketten enthalten eine *Halbleiterschaltung* (*Mikrochip*) sowie eine *Schwingkreisspule* aus gewickeltem Kupferlack. Mit einer angelöteten Kapazität wird der Schwingkreis auf der Arbeitsfrequenz des EAS-Systems in Resonanz gebracht. Diese Transponder sind als *Hartetiketten* (Kunststoff) erhältlich und werden beim Kauf von der Ware entfernt.

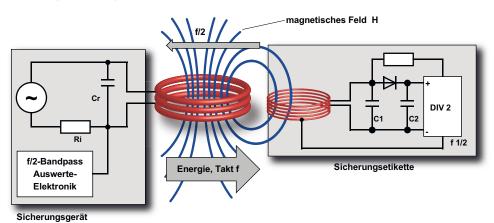


Abb. 3.7 Prinzipschaltbild des EAS-Frequenzteiler-Verfahrens: Sicherungsetikette (Transponder) und Detektor (Auswertegerät).

Der Mikrochip des Transponders wird durch die aus dem magnetischen Feld des Sicherungsgerätes ausgekoppelte Energie mit Betriebsspannung versorgt (siehe Kap. 3.2.1.1 "Energieversorgung passiver Transponder", S. 47). Die an der Schwingkreisspule anliegende Frequenz wird vom Mikrochip durch 2 geteilt und zum Sicherungsgerät zurückgesendet. Die Einspeisung des frequenzhalbierten Signals erfolgt an einer Anzapfung der Schwingkreisspule.

Um die Auswertequote zu verbessern, wird das magnetische Feld des Sicherungsgerätes mit niedriger Frequenz gepulst (ASK-moduliert). Wie bei der Erzeugung von Harmonischen, so bleibt auch bei der halbierten Frequenz (*Subharmonische*) die Modulation der Grundwelle (ASK oder FSK) erhalten. Dies wird zur Unterscheidung von "Stör"- und "Nutz"-Signalen eingesetzt. Fehlalarme treten bei diesen Systemen daher kaum auf.

Als Sensor-Antennen werden Rahmenantennen eingesetzt, wie sie von den RF-Systemen her bereits bekannt sind.

Tabelle 3.3: Typische Systemparameter [plotzke].

Frequenz:	130 kHz
Modulationsart:	100% ASK
Modulationsfrequenz/-signal:	12,5 Hz oder 25 Hz, Rechteck 50%

3.1.4 Elektro-Magnetisch

Elektro-magnetische Verfahren arbeiten mit starken magnetischen Feldern im NF-Bereich von 10 Hz bis etwa 20 kHz. In den Sicherungsmitteln befindet sich ein weichmagnetischer amorpher Metallstreifen mit einer steilflankigen Hysteresekurve (siehe hierzu 4.1.2). In einem starken magnetischen Wechselfeld wird dieser Streifen periodisch ummagnetisiert und bis in die magnetische Sättigung geführt. Das stark unlineare Verhältnis zwischen angelegter Feldstärke H und magnetischer Flussdichte B nahe der Sättigung (siehe hierzu Abbildung 4.56 auf Seite 132), sowie der sprunghafte Wechsel der Flussdichte B nahe dem Nulldurchgang der angelegten Feldstärke H erzeugen Harmonische der Grundfrequenz des Sicherungsgerätes, die von diesem empfangen und ausgewertet werden können.

Eine Optimierung des elektro-magnetischen Verfahrens besteht darin, dem Hauptsignal zusätzlich Signalanteile mit höherer Frequenz zu überlagern. Durch die starke Unlinearität der Hysteresekurve im Streifen entstehen dadurch, zusätzlich zu den Harmonischen, Signalanteile mit Summen- und Differenzfrequenzen der eingespeisten Signale. Bei einem Hauptsignal der Frequenz f_H =20 Hz und den Zusatzsignalen f_1 =3,5 und f_2 =5,3 kHz entstehen folgende Signale (1. Ordnung):

$$\begin{split} f_1 + f_2 &= f_{1+2} = 8,80 \text{ kHz} \\ f_1 - f_2 &= f_{1-2} = 1,80 \text{ kHz} \\ f_H + f_1 &= f_{H+1} = 3,52 \text{ kHz} \quad \text{und so weiter ...} \end{split}$$

Das Sicherungsgerät reagiert hier nicht auf die Harmonischen der Grundfrequenz, sondern auf die Summen- oder Differenzfrequenz der Zusatzsignale.

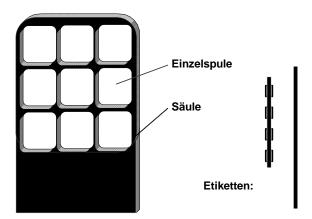


Abb. 3.8 links: Typische Antennenbauform der Sicherungsanlage (Höhe ca 1,40 m); rechts: Mögliche Bauformen von Etiketten.

Die Sicherungsmittel sind als Etiketten in Form selbstklebender Streifen von einigen cm bis 20 cm Länge erhältlich. Aufgrund der extrem niedrigen Arbeitsfrequenzen eignen sich elektro-magnetische Systeme als einzige für metallhaltige Waren. Nachteilig wirkt sich jedoch die Lageabhängigkeit der Etiketten aus: Für eine sichere Detektion müssen die magnetischen Feldlinien des Sicherungsgerätes senkrecht durch den amorphen Metallstreifen laufen.

Abb. 3.9 Elektro-magnetische Etiketten im Einsatz. (Foto: Schreiner Codedruck, München)

Zur Deaktivierung sind die Etiketten mit einer hartmagnetischen Metallschicht umgeben oder partiell mit hartmagnetischen Plättchen bedeckt. An der Kasse werden die Sicherungsmittel deaktiviert indem die Kassiererin mit einem starken *Permanentmagneten* den Metall-

streifen entlangfährt [plotzke]. Hierdurch werden die hartmagnetischen Metallplättchen magnetisch. Dabei sind die Metallstreifen so ausgelegt, dass die Remanenzfeldstärke (siehe hierzu Kap. 4.1.12 "Magnetische Werkstoffe", S. 132) der Metallplättchen ausreicht, um den amorphen Metallstreifen in der Sättigung zu halten, sodass das magnetische Wechselfeld der Sicherungsanlage nicht mehr wirksam werden kann.

Durch Entmagnetisierung können die Etiketten jederzeit wieder reaktiviert werden. Der Prozess der De- und Reaktivierung ist beliebig oft durchführbar. Aus diesem Grunde lag das Haupteinsatzgebiet der elektro-magnetischen Warensicherung ursprünglich bei Leihbibliotheken. Wegen der kleinen (mind. 32 mm kurze Streifen) und preiswerten Etiketten werden diese Systeme zunehmend auch im Lebensmitteleinzelhandel eingesetzt.

Um die erforderlichen Feldstärken zur Ummagnetisierung der Permalloy-Streifen zu erreichen, wird das Feld von zwei Spulensystemen in den Säulen zu beiden Seiten des schmalen Durchgangs erzeugt. In den beiden Säulen sind mehrere Einzelspulen, typischerweise 9 bis 12, die in der Mitte schwächere und außen stärkere Magnetfelder generieren [plotzke]. Damit sind heute Schleusenbreiten bis zu 1,50 m realisierbar, wobei noch Detektionsraten von 70% erreicht werden [gillert].

Abb. 3.10 Praktische Ausführung einer Antenne für Artikelsicherungssysteme. (Foto: METO EAS-System 2200, Esselte Meto, Hirschborn)

Tabelle 3.4: Typische Systemparameter [plotzke].

Frequenz	70 Hz
optionale Mischfrequenzen verschiedener Anlagen	21 Hz, 215 Hz, 3,3 kHz, 5 kHz
Feldstärke H _{eff} im Detektionsbereich	25 120 A/m
minimale Feldstärke zur Deaktivierung	16000 A/m

3.1.5 Akustomagnetisch

Die Sicherungsmittel akustomagnetischer Systeme bestehen aus kleinen Kunststoffboxen, die etwa 40 mm lang, je nach Ausführung etwa 8 bis 14 mm breit und einen knappen Millimeter hoch sind. In dieser Box befinden sich zwei Metallstreifen, ein *hartmagnetischer Metallstreifen*, der fest mit der Plastikbox verbunden ist, sowie ein Streifen aus *amorphem Metall*, der so gelagert wird, dass er mechanisch frei schwingen kann [zechbauer].

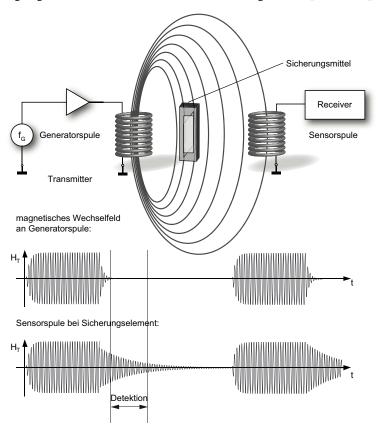


Abb. 3.11 Akustomagnetisches System bestehend aus Sender und Detektionsgerät (Receiver). Befindet sich ein Sicherungsmittel im Feld der Generatorspule, so schwingt dieses nach den Pulsen der Generatorspule wie eine Stimmgabel aus. Das Ausschwingverhalten kann von einem Auswertegerät detektiert werden.

Ferromagnetische Metalle (Nickel, Eisen, usw.) verändern in einem magnetischen Feld unter dem Einfluss der Feldstärke H ihre Länge in einem geringen Maße. Dieser Effekt wird als Magnetostriktion bezeichnet und ergibt sich aus einer geringfügigen Änderung des Atomabstandes durch die Magnetisierung. In einem magnetischen Wechselfeld schwingt ein magnetostriktiver Metallstreifen longitudinal mit der Frequenz des Feldes. Entspricht die Frequenz des magnetischen Wechselfeldes der (akustischen) Resonanzfrequenz des Metallstreifens, so wird die Amplitude der Schwingung besonders groß. Bei amorphen Metallen ist dieser Effekt besonders ausgeprägt.

Entscheidend ist nun, dass der magnetostriktive Effekt auch umkehrbar ist. Dies bedeutet, dass von einem schwingenden magnetostriktiven Metallstreifen ein magnetisches Wechselfeld ausgesendet wird. Akustomagnetische Sicherungssysteme sind nun so ausgelegt, dass die Frequenz des erzeugten magnetischen Wechselfeldes mit den Resonanzfrequenzen der Metallstreifen in den Sicherungsmitteln exakt übereinstimmt. Der amorphe Metallstreifen beginnt unter dem Einfluss des angelegten Magnetfeldes zu schwingen. Wird das magnetische Wechselfeld nach einiger Zeit abgeschaltet, so schwingt der angeregte Metallstreifen wie eine Stimmgabel noch eine gewisse Zeit weiter und erzeugt dabei selbst ein magnetisches Wechselfeld, das von der Sicherungsanlage leicht detektiert werden kann.

Tabelle 3.5: Typische Betriebsparameter akustomagnetischer Systeme [VDI4471].

Parameter	typischer Wert
Resonanz frequenz \mathbf{f}_0	58 kHz
Frequenztoleranz	± 0,52%
Gütefaktor Q	> 150
minimale Feldstärke zur H_A zur Aktivierung	> 16.000 A/m
Einschaltdauer des Feldes	2 ms
Feldpause (Ausschaltdauer)	20 ms
Ausschwingvorgang des Sicherungsmittels	5 ms

Der große Vorteil dieses Verfahrens besteht darin, dass die Sicherungsanlage während der Zeit, in der das Sicherungsmittel antwortet, selbst nicht sendet und die Detektionsempfänger somit entsprechend empfindlich ausgelegt werden können.

Im aktivierten Zustand sind akustomagnetische Sicherungsmittel magnetisiert, d. h. der eingangs erwähnte hartmagnetische Metallstreifen weist eine hohe Remanenzfeldstärke auf und bildet somit einen Dauermagneten. Um das Sicherungsmittel zu deaktivieren, muss der hartmagnetische Metallstreifen entmagnetisiert werden. Dies verstimmt die Resonanzfrequenz des amorphen Metallstreifens, sodass dieser durch die Ansprechfrequenz der Sicherungsanlage nicht mehr angeregt werden kann. Das Entmagnetisieren des hartmagnetischen Metallstreifens kann nur durch ein in der Feldstärke langsam abklingendes, starkes magnetisches Wechselfeld erfolgen. Die Manipulation der Sicherungsmittel durch vom Kunden mitgebrachte Dauermagneten ist somit sicher ausgeschlossen.

3.2 Voll- und Halbduplexverfahren

Im Gegensatz zu den 1-bit-Transpondern, welche meist durch die Anwendung einfacher physikalischer Effekte (Anschwingvorgänge, Anregung von harmonischen Verfahren mit Hilfe der unlinearen Kennlinien von Dioden oder an der unlinearen Hysteresekurve von Metallen) realisiert werden, verwenden die in diesem und dem folgenden Kapitel beschriebenen Transponder einen elektronischen Mikrochip als Datenträger. Auf diesem Datenträger können Datenmengen von wenigen Bytes bis hin zu einigen MByte gespeichert werden. Um die Datenträger auszulesen oder zu beschreiben, müssen Daten vom Lesegerät an den Transponder und auch zurück vom Transponder an das Lesegerät übertragen werden können. Hierbei kommen zwei grundsätzlich unterschiedliche Verfahren zum Einsatz: Voll- und Halbduplexverfahren, die in diesem Kapitel, sowie sequentielle Systeme, die im nachfolgenden Kapitel beschrieben werden.

Findet die Datenübertragung von Transponder in Richtung Lesegerät zeitversetzt mit der Datenübertragung vom Lesegerät zum Transponder statt, so bezeichnet man dies als *Halbdu-plexverfahren* (HDX). Bei Frequenzen unter 30 MHz wird zur Datenübertragung vom Transponder zum Lesegerät am häufigsten das Verfahren der Lastmodulation mit und ohne Hilfsträger eingesetzt, welches auch schaltungs-technisch sehr einfach zu realisieren ist. Damit eng verwandt ist das aus der Radartechnik bekannte Verfahren des modulierten Rückstrahlquerschnitts, welches auf Frequenzen über 100 MHz zum Einsatz kommt. Lastmodulation und modulierter Rückstrahlquerschnitt beeinflussen unmittelbar das durch das Lesegerät erzeugte magnetische oder elektromagnetische Feld, und werden deshalb auch zu den "*harmonischen*" Verfahren gezählt.

Findet die Datenübertragung vom Transponder in Richtung Lesegerät (Uplink) zeitgleich mit der Datenübertragung vom Lesegerät zum Transponder (Downlink) statt, so bezeichnet man dies als *Vollduplexverfahren* (FDX). Dabei kommen Verfahren zum Einsatz, bei denen die Daten des Transponders auf Teilfrequenzen des Lesegeräts, also einer *subharmonischen*, oder auf einer davon völlig unabhängigen, also *anharmonischen* Frequenz zum Lesegerät übertragen werden.

Zur Datenübertragung vom Lesegerät zum Transponder (Downlink) werden bei Voll- und Halbduplexsystemen unabhängig von der Arbeitsfrequenz oder dem Kopplungsverfahren alle bekannten Verfahren der digitalen Modulation eingesetzt. Man unterscheidet zwischen drei grundsätzlichen Verfahren:

- ASK: Amplitude Shift Keying
- FSK: Frequency Shift Keying
- *PSK*: Phase Shift Keying

Wegen der einfachen Demodulationsmöglichkeit und der damit verbundenen einfacheren Schaltungstechnik im Transponder, verwendet die überwiegende Mehrheit der Systeme eine ASK-Modulation zur Datenübertragung an den Transponder.

FSK ist theoretisch möglich, dem Autor ist derzeit jedoch kein RFID-System bekannt, bei welchem FSK auf der Downlink kommerziell eingesetzt würde.

Auch PSK gewinnt erst in jüngster Zeit an Bedeutung. So wurde in der Standardisierung für *ISO/IEC 14443* in 2011 ein Projekt gestartet, um mit PSK-Modulationsverfahren in Zukunft Bitraten von 10 MBit/s und höher auf dem Downlinkkanal zu ermöglichen. ASK wird bei ISO/IEC 14443 für Bitraten von 106 kBit/s bis hin zu 6,78 MBit/s eingesetzt.

Das wichtigste gemeinsame Merkmal der Voll- und Halbduplexsysteme besteht darin, dass die Energieübertragung vom Lesegerät zum Transponder kontinuierlich, also unabhängig von der Datenübertragungsrichtung stattfindet. Im Gegensatz dazu findet bei den sequentiellen Systemen (SEQ) die Energieübertragung vom Transponder zum Lesegerät immer nur für eine begrenzte Zeitspanne statt (Pulsbetrieb \rightarrow *gepulste Systeme*). Die Datenübertragung vom Transponder zum Lesegerät wird in den Pausen zwischen der Energieversorgung des Transponders durchgeführt.

Leider konnte man sich in der Literatur über RFID-Systeme nie auf eine einheitliche Nomenklatur für diese Systemvarianten einigen. Vielmehr ist eine verwirrende und uneinheitliche Zuordnung einzelner Systeme zu Voll- und Halbduplexsystemen üblich. So werden gepulste Systeme häufig als Halbduplexsysteme bezeichnet – dies ist aus Sicht der Datenübertragung zunächst richtig –, alle ungepulsten Systeme werden aber gleichzeitig fälschlicherweise den Vollduplexsystemen zugeordnet. In diesem Buch werden deshalb gepulste Systeme – zur Unterscheidung von anderen Verfahren, und entgegen der üblichen RFID-Literatur(!) – als sequentielle Systeme (SEQ) bezeichnet.

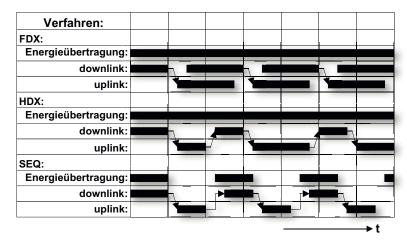


Abb. 3.12 Darstellung der zeitlichen Abläufe bei Voll-, Halbduplex- und sequentiellen Systemen. Die Datenübertragung vom Lesegerät zum Transponder wird in der Abbildung als downlink, die Datenübertragung vom Transponder zum Lesegerät als uplink bezeichnet.

3.2.1 Induktive Kopplung

3.2.1.1 Energieversorgung passiver Transponder

Ein induktiv gekoppelter Transponder besteht aus einem elektronischen Datenträger, meist einem einzelnen Mikrochip, sowie einer großflächigen Spule oder Leiterschleife, welche als Antenne dient.

Induktiv gekoppelte Transponder werden fast ausschließlich passiv betrieben. Dies bedeutet, dass die gesamte zum Betrieb des Mikrochips notwendige Energie durch das Lesegerät zur Verfügung gestellt werden muss. Von der Antennenspule des Lesegerätes wird dazu ein starkes hochfrequentes, elektromagnetisches Feld erzeugt, welches den Querschnitt der Spulenfläche und den Raum um die Spule durchdringt. Da die Wellenlänge der verwendeten Frequenzbereiche (< 135 kHz: 2400 m, 13,56 MHz: 22,1 m) um ein Vielfaches größer ist als die Entfernung zwischen Leser-Antenne und Transponder, darf das elektromagnetische Feld im Abstand des Transponders zur Antenne mathematisch noch als einfaches magnetisches Wechselfeld behandelt werden (Weiteres dazu kann dem Kap. 4.2.1.1 "Übergang vom Nahzum Fernfeld bei Leiterschleifen", S. 138 entnommen werden).

Ein geringer Teil des von der Antenne des Lesegeräts erzeugten magnetisches Feldes durchdringt dabei auch die Antennenspule des Transponders, der sich in einiger Entfernung zur Spule des Lesegerätes befindet. Durch Induktion wird dadurch an der Antennenspule des Transponders eine Spannung U_i erzeugt. Die induzierte Spannung wird gleichgerichtet und dient der Energieversorgung des Datenträgers (Mikrochip).

Der Antennenspule des Lesegerätes wird ein Kondensator C_r parallelgeschaltet, dessen Kapazität so gewählt wird, dass zusammen mit der Spuleninduktivität der Antennenspule ein Parallelschwingkreis gebildet wird, dessen Resonanzfrequenz der Sendefrequenz des Lesegerätes entspricht. Durch den Effekt der Resonanzüberhöhung im Parallelschwingkreis können in der Antennenspule des Lesegerätes sehr hohe Ströme erreicht werden, womit die notwendigen Feldstärken auch zum Betrieb entfernter Transponder erzeugt werden können.

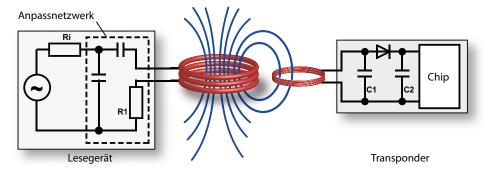


Abb. 3.13 Spannungsversorgung eines induktiv gekoppelten Transponders aus der Energie des magnetischen Wechselfeldes, das vom Lesegerät erzeugt wird.

Die Antennenspule des Transponders bildet zusammen mit dem Kondensator C1 ebenfalls einen Schwingkreis, welcher in etwa auf die Sendefrequenz des Lesegerätes abgestimmt wird. Durch Resonanzüberhöhung im Parallelschwingkreis erreicht die Spannung U_i an der Transponderspule ein Maximum.

Die Anordnung der beiden Spulen kann auch als Transformator interpretiert werden (*transformatorische Kopplung*), wobei zwischen den beiden Windungen nur eine sehr schwache Kopplung besteht. Der Wirkungsgrad der Leistungsübertragung zwischen der Antennenspule des Lesegerätes und dem Transponder ist proportional der Arbeitsfrequenz f, der Windungszahl n der Transponderspule, der umschlossenen Fläche A der Transponderspule, dem Winkel der beiden Spulen zueinander sowie der Entfernung zwischen den beiden Spulen.



Abb. 3.14 Verschiedene Bauformen induktiv gekoppelter Transponder. Dargestellt sind Transponder-Halbzeuge, also Transponder vor dem Einspritzen in ein Kunststoffgehäuse.
 (Foto: AmaTech GmbH & Co. KG, Pfronten)

Abb. 3.15 Lesegerät für induktiv gekoppelte Transponder im Frequenzbereich < 135 kHz mit integrierter Antenne. (Foto: easy-key System, micron, Halbergmoos)

Tabelle 3.6: Übersicht über die Stromaufnahme verschiedener RFID-ASIC-Bausteine [ATMEL]. Die zum Betrieb der Mikrochips minimal notwendige Versorgungsspannung ist mit 1,8 V, die maximal zulässige mit 10 V angegeben.

	Speicher/Byte	Schreib-/ Lesedistanz	Stromauf- nahme	Frequenz	Anwendung
ASIC#1	6	15 cm	10 μΑ	120 kHz	Tier ID
ASIC#2	32	13 cm	600 μΑ	120 kHz	Warenfluss, Zutritts-kontrolle
ASIC#3	256	2 cm	6 mA	128 kHz	ÖPNV
ASIC#4	256	< 2 cm	~ 1 mA	4/13,56 MHz	Warenfluss
ASIC#5	256	100 cm	500 μΑ	125 kHz	Zutrittskontrolle
ASIC#6	2048	0,3 cm	< 10 mA	4,91 MHz*)	kontaktlose Chipkarte
ASIC#7	1024	10 cm	~ 1 mA	13,56 MHz	ÖPNV
ASIC#8	8	100 cm	< 1 mA	125 kHz	Warenfluss
ASIC#9	128	100 cm	< 1 mA	125 kHz	Zutrittskontrolle

Mit zunehmender Frequenz f nimmt die benötigte Spuleninduktivität der Transponderspule und damit auch die Windungszahl "n" ab (135 kHz: typisch 100 ... 1000 Windungen, 13,56 MHz: typisch 3 ... 10 Windungen). Da die im Transponder induzierte Spannung jedoch proportional der Frequenz f ist (siehe hierzu Kap. 4.1.7 "Resonanz", S. 90), wirkt sich die geringere Windungszahl bei höheren Frequenzen in der Praxis auf den Wirkungsgrad der Leistungsübertragung kaum aus.

3.2.1.2 Datenübertragung Transponder > Lesegerät

3.2.1.2.1 Lastmodulation

Wie bereits gezeigt, besteht bei induktiv gekoppelten Systemen eine *transformatorische Kopplung* zwischen der primären Spule im Lesegerät und der sekundären Spule im Transponder. Dies gilt, solange der Abstand zwischen den Spulen nicht größer als $(\lambda/2\pi)$ 0,16 λ wird, sodass sich der Transponder im *Nahfeld* der Sendeantenne befindet (eine nähere Erklärung zur Definition des Nah- und Fernfeldes siehe Kapitel 4.2.1.1 "Übergang vom Nah- zum Fernfeld bei Leiterschleifen", S. 138).

Wird ein resonanter Transponder (d. h. die Eigenresonanzfrequenz des Transponders entspricht der Sendefrequenz des Lesegerätes) in das magnetische Wechselfeld der Antenne des Lesegerätes gebracht, so entzieht dieser dem magnetischen Feld Energie. Die dadurch hervorgerufene Rückwirkung des Transponders auf die Antenne des Lesegerätes kann als *transformierte Impedanz* Z_T in der Antennenspule des Lesegerätes dargestellt werden. Das Einund Ausschalten eines *Lastwiderstandes* an der Antenne des Transponders bewirkt eine Veränderung der Impedanz Z_T und damit Spannungsänderungen an der Antenne des Lesegerätes (siehe Kapitel 4.1.10.3 "Lastmodulation", S. 115). Dies entspricht in der Wirkung einer Amplitudenmodulation der Spannung U_L an der Antennenspule des Lesegerätes durch den entfernten Transponder. Steuert man das An- und Ausschalten des Lastwiderstandes durch Daten, so können diese Daten vom Transponder zum Lesegerät übertragen werden. Diese Form der Datenübertragung wird als *Lastmodulation* bezeichnet.

In der Praxis zeigt sich, dass der Phasenwinkel der transformierten Impedanz vom Phasenwinkel des Stromes in der Transponderantenne, und damit von der genauen Resonanzfrequenz des Transponderschwingkreises abhängt. Je nach Phasenwinkel der transformierten Impedanz kann eine Lastmodulation eine "positive" oder "negative" Amplitudenmodulation, eine reine Phasenmodulation, oder eine Mischung davon, an der Antennenspule des Lesegerätes erzeugen. Hinzu kommt, dass vereinzelt auch kapazitive Lastmodulation, also die Umschaltung der Resonanzfrequenz des Transponders, verwendet wird.

Zur Rückgewinnung der Daten im Lesegerät wird eine an der Antenne des Lesegerätes abgegriffene Spannung gleichgerichtet. Dies entspricht der Demodulation eines amplitudenmodulierten Signals. Ein Schaltungsbeispiel hierfür kann dem Kapitel 11.3.1 "Integriertes HF-Interface", S. 498 entnommen werden.

Verlässt der Transponder das Nahfeld, also den Bereich $< \lambda/2\pi$ (0,16 λ), so geht mit dem Übergang in das Fernfeld auch die transformatorische Kopplung zwischen der Antenne des

Lesegerätes und der Antenne des Transponders verloren. Eine Lastmodulation ist im Fernfeld daher nicht mehr möglich. Dies bedeutet jedoch nicht, dass eine Datenübertragung vom Transponder zum Lesegerät grundsätzlich nicht mehr möglich wäre. Mit dem Übergang ins Fernfeld beginnt der Mechanismus der Backscatter-Kopplung (Siehe "Elektromagnetische Backscatter-Kopplung" auf Seite 58.) wirksam zu werden. In der Praxis scheitert eine Datenübertragung zum Lesegerät jedoch in der Regel an dem kleinen Wirkungsgrad der Transponderantennen (d. h. dem geringen Antennengewinn) im Fernfeld.

3.2.1.2.2 Lastmodulation mit Hilfsträger

Auf Grund der geringen Kopplung zwischen Leseantenne und Transponder-Antenne sind die das Nutzsignal darstellenden Spannungsschwankungen an der Antenne des Lesegerätes um Größenordnungen kleiner als die Ausgangsspannung des Lesegerätes. Bei einem 13,56 MHz-System kann in der Praxis, bei einer Antennenspannung von ca. 100V (Spannungsüberhöhung durch Resonanz!) mit einem Nutzsignal von etwa 10 mV gerechnet werden (= 80 dB Nutz/"Störsignal"-Verhältnis). Da diese geringen Spannungsänderungen nur mit einem sehr großen schaltungstechnischen Aufwand zu detektieren sind, macht man sich die durch die Amplitudenmodulation der Antennenspannung entstehenden Modulationsseitenbänder zunutze:

Wird nämlich der zusätzliche Lastwiderstand im Transponder mit sehr hoher Taktfrequenz f_H ein- und ausgeschaltet, so entstehen zwei Spektrallinien im Abstand $\pm f_H$ um die Sendefrequenz des Lesegerätes, die nun leicht detektiert werden können (es muss jedoch $f_H < f_{LESER}$ sein). Im Sprachgebrauch der Funktechnik wird die zusätzlich eingeführte Taktfrequenz als Hilfsträger (Subcarrier) bezeichnet.

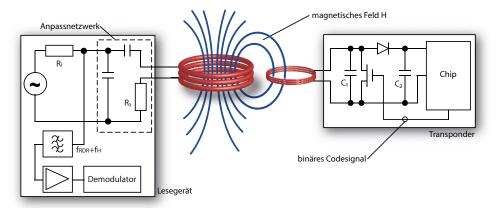


Abb. 3.16 Erzeugung der Lastmodulation im Transponder durch Umschalten des Drain-Source-Widerstandes eines FET auf dem Chip. Das abgebildete Lesegerät ist für die Detektion eines Hilfsträgers ausgelegt.

Um nun Daten an das Lesegerät zu übertragen, wird der *Hilfsträger* selbst im Takt des Datenflusses moduliert. Der Lastwiderstand im *Lastmodulator* wird nun im Takt des modulierten Hilfsträgers ein- und ausgeschaltet. Als Modulationsverfahren für den Hilfsträger

werden ASK- (z. B. ISO/IEC 14443 Typ A: On-Off keying), FSK- (z. B. ISO/IEC 15693: Umtastung zwischen den beiden Hilfsträgerfrequenzen 424 kHz und 485 kHz) oder PSK-Modulation (z. B. ISO/IEC 14443 Typ B: 2-PSK oder BPSK) eingesetzt.

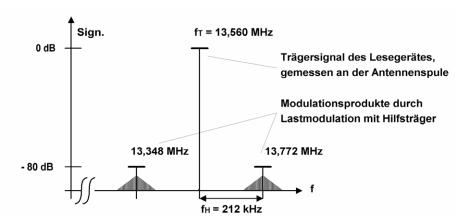


Abb. 3.17 Durch Lastmodulation mit Hilfsträger entstehen zwei Seitenbänder im Abstand der Hilfsträgerfrequenz f_H um die Sendefrequenz des Lesegerätes. Die eigentliche Information steckt in den Seitenbändern der beiden Hilfsträger-Seitenbänder, welche durch die Modulation des Hilfsträgers selbst entstehen.

Durch Lastmodulation mit Hilfsträger entstehen an der Antenne des Lesegerätes zwei Modulationsseitenbänder im Abstand der Hilfsträgerfrequenz um die Arbeitsfrequenz f_{LESER} . Diese Modulationsseitenbänder können durch eine Bandpassfilterung auf einer der beiden Frequenzen f_{LESER} $\pm f_H$ vom wesentlich stärkeren Signal des Lesegerätes getrennt werden. Nach anschließender Verstärkung ist das Hilfsträgersignal dann sehr einfach zu demodulieren.

Lastmodulation mit Hilfsträger wird fast ausschließlich im Frequenzbereich 13,56 MHz eingesetzt. Typische Hilfsträgerfrequenzen sind 212 kHz, 424 kHz (z.B. ISO/IEC 15693) und 848 kHz (z.B. ISO/IEC 14443).

3.2.1.2.3 Schaltungsbeispiel – Lastmodulation mit Hilfsträger

Ein Beispiel für die schaltungstechnische Realisierung eines Transponders mit Lastmodulation mit Hilfsträger ist in Abbildung 3.18 gezeigt. Die Schaltung ist für eine Arbeitsfrequenz von 13,56 MHz ausgelegt und erzeugt einen Hilfsträger von 106 kHz.

Die an der Antennenspule L_1 durch das magnetische Wechselfeld des Lesegerätes induzierte Spannung wird mit dem Brückengleichrichter ($D_1 \dots D_4$) gleichgerichtet und steht nach zusätzlicher Glättung (C_1) der Schaltung als Versorgungsspannung zur Verfügung. Mit dem Parallelregler (ZD 5V6) wird das unbegrenzte Ansteigen der Versorgungsspannung bei Annäherung des Transponders an die Leserantenne verhindert.

Über den Vorwiderstand (R_1) gelangt ein Teil der hochfrequenten Antennenspannung (13,56 MHz) an den Takteingang (CLK) des Frequenzteilers (IC1) und dient dem Transponder als Basis zur Erzeugung eines internen Taktsignals. Nach einer Teilung durch 2^7 (=128) steht an

Ausgang Q7 ein Hilfsträger-Taktsignal von 106 kHz zur Verfügung. Das Hilfsträger-Taktsignal wird, gesteuert durch einen seriellen Datenfluss am Dateneingang (DATA), auf den Schalter (T₁) gegeben. Liegt am Dateneingang (DATA) ein logisches HIGH-Signal, so wird das Hilfsträger-Taktsignal auf den Schalter (T₁) gegeben. Der Lastwiderstand (R₂) wird dann im Takt der Hilfsträgerfrequenz an- und abgeschaltet.

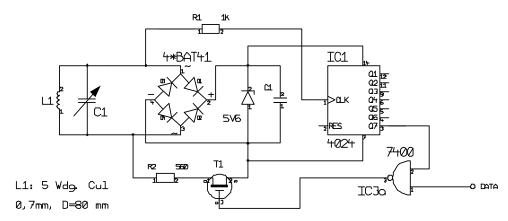


Abb. 3.18 Schaltungsbeispiel für die Erzeugung einer Lastmodulation mit Hilfsträger in einem induktiv gekoppelten Transponder.

Durch die Beschaltung des UND-Gatters (IC3) mit einem beliebigen anderen Ausgang (Q1 .. Q6) des Teilers kann auch eine höhere Hilfsträgerfrequenz (Q6: 212 kHz, Q5: 484 kHz, Q4: 848 kHz, .. Q2: 6,78 MHz) gewählt werden.

Optional lässt sich bei der abgebildeten Schaltung der Transponderschwingkreis mit der Kapazität C_1 auf 13,56 MHz in Resonanz bringen. Die Reichweite dieses "Minimaltransponders" kann damit deutlich vergrößert werden.

3.2.1.2.4 Aktive Lastmodulation

Die begrenzenden Faktoren eines induktiv gekoppelten RFID-Systems hinsichtlich der *Kommunikationsreichweite* liegen einerseits in der *Energiereichweite* des Lesegerätes, also der Fähigkeit, einen Transponder im Leseabstand mit ausreichend Energie zum Betrieb zu versorgen, sowie anderseits in der Fähigkeit, Daten per Lastmodulation vom Transponder an das Lesegerät zurückzusenden. In beiden Fällen wird eine ausreichend große magnetische Gegenkopplung (mutual magnetic coupling M) zwischen der Antenne des Lesegerätes und der Antenne des Transponders benötigt.

Die physikalischen Parameter eines induktiv gekoppelten RFID-Systems sind zum Beispiel in *ISO/IEC 14443* so definiert, dass sich bei hohen Bitraten (106 .. 868 kBit/s), hohem Energieverbrauch des Transponderchips (Mikroprozessor mit Smart Card-Betriebssystem) und der Chipkarten-Bauform ID1 eine typische Lesereichweite von 10 cm oder weniger ergibt.

Werden an Stelle der Chipkarten-Bauform ID1 sehr kleine Transponder mit Antennen im Formfaktor einer *SIM-Karte* oder einer *micro-SD Karte* eingesetzt, so sinkt die magnetische Gegenkopplung, und damit die erreichbare Lesereichweite drastisch ab. Soll ein solch klei-

ner Transponder beispielsweise in ein Mobiltelefon oder in ein PDA eingesetzt werden, um diese mit einem kontaktlosen Interface auszustatten, so führt die kleine Lesereichweite von evtl. nur wenigen Zentimetern schnell zu einem Problem, insbesondere wenn der Transponder bei zusätzlich auftretender Abschirmung (z.B. durch den Akku) schließlich nicht mehr in der Lage ist, die Reichweite zu einem außerhalb befindlichen Lesegerät zu überbrücken.

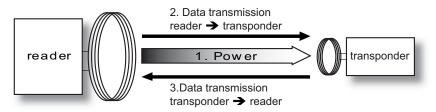


Abb. 3.19 Die die Kommunikationsreichweite begrenzenden Faktoren eines passiven, induktiv gekopplten RFID-Systems.

Um auch mit Transpondern mit sehr kleiner Antennengeometrie akzeptable Lesereichweiten zu erzielen, müssen die eben beschriebenen begrenzenden Faktoren beseitigt werden. Im Falle der Energiereichweite ist das Problem einer zu geringen magnetischen Gegenkopplung einfach zu lösen. Hierzu ist es lediglich notwendig, den Transponder aus einer lokalen Energiequelle (Batterie) mit Strom zu versorgen. Wird der Tansponder in der Bauform einer SIM-Karte oder einer micro-SD Karte in einem Mobiltelefon betrieben, so kann die Energie über einen Anschlusspin direkt im Mobiltelefon zur Verfügung gestellt werden.

Um einen passiven Transponderchip mit Energie zu versorgen, müsste eine Spannung von wenigstens 3 V in der Transponderantenne induziert werden. Bei einem *batteriegestützten Transponder* hingegen wird die in der Antenne induzierte Spannung nicht mehr zur Energieversorgung des Transponderchips verwendet, sondern nur noch dazu, Daten und Kommandos vom Lesegerät zu übertragen. Hierzu reicht aber bereits eine Spannung mit erheblich geringerem Pegel von wenigstens einigen mV aus, da diese einfach verstärkt werden kann. Auf diese Weise kann das Signal des Lesegeräts auch mit kleinsten Transponderantennen und Metallabschirmung auf deutlich größere Entfernung detektiert werden.

Etwas komplexer ist die Optimierung der Datenübertragung vom Transponder zurück zu einem Lesegerät. Die üblicherweise verwendete (passive) Lastmodulation scheidet auch bei einem Transponder mit externer Energieversorgung (aktiver Transponder) aus, da sich ohne eine Verbesserung der magnetischen Kopplung nur eine unwesentliche Verbesserung gegenüber einem passiven (batterielosen) Transponder ergibt. Eine Vergrößerung der magnetischen Kopplung ist aber nur durch die Verringerung des Abstands zwischen den Antennen oder einer Vergrößerung der Antennenfläche des Transponders möglich.

Eine Alternative besteht darin, auf anderem Wege ein Signal zu erzeugen, welches im Frequenzspektrum dem Signal einer *passiven Lastmodulation* gleicht, und dieses aktiv (d.h. unter Aufwendung von eigener Energie) an das Lesegerät zu senden. Ein solches Verfahren wird als *aktive Lastmodulation* (active load modulation) bezeichnet. Betrachten wir das durch eine (passive) Lastmodulation an der Antenne des Lesegerätes auftretende Frequenzspektrum, so sind zum Beispiel bei ISO/IEC 14443 neben dem Trägersignal (13,56 MHz) im Abstand der

Hilfsträgerfrequenz (848 kHz) zwei weitere Spektrallinien (14,408 MHz und 12,712 MHz) zu erkennen, um die sich jeweils zwei Modulationsseitenbänder ausbilden. Die Nutzdaten sind dabei ausschließlich in den Modulationsseitenbändern um die Hilfsträgerlinien enthalten.

Um Daten von einem aktiven Transponder an ein Lesegerät zu senden würde es ausreichen, die beiden Hilfsträger-Spektrallinien mit den datentragenden Seitenbändern zu erzeugen und an ein Lesegerät zu senden. Das Trägersignal muss dabei nicht übertragen werden; dieses wird vom Lesegerät ohnehin permanent ausgesendet. Ein solches Signal wird als *Zweiseitenband*- oder "*Dual-Side-Band*" (*DSB*)-Modulation bezeichnet.

Eine Grundschaltung der Nachrichtentechnik, mit der eine solche DSB-Modulation erzeugt werden kann, ist der *Ringmodulator*. Der Ringmodulator wird mit einer Referenzfrequenz fc = 13,56 MHz und dem modulierten Hilfsträger gespeist. Das Ausgangssignal des Ringmodulators ist dann bereits das benötigte DSB-Signal. Dieses wird in einem Verstärker im Pegel angehoben und über die Antenne abgestrahlt.

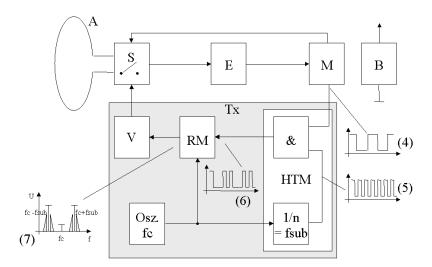


Abb. 3.20 Blockschaltbild eines Transponders mit aktiver Lastmodulation (RM: Ringmodulator, HTM: modulierter Hilfsträger, V: Verstärker, M: Microcontroller, E: Empfangsverstärker, B: Energieversorgung (Batterie).

Da es sich bei den in einem Transponderchip verfügbaren Signalen nicht um analoge, sondern um binäre Signale handelt, können die benötigten Modulationsseitenbänder noch wesentlich einfacher durch eine Amplitudenmodulation erzeugt werden. Eine Amplitudenmodulation entsteht bei analogen Signalen wie bekannt durch die Multiplikation zweier Sinusschwingungen unterschiedlicher Frequenz:

$$U_{\text{mod}} = U_1 \cdot \sin(\omega_1 \cdot t) \cdot U_2 \cdot \sin(\omega_2 \cdot t)$$
 [3.1]

Eine Multiplikation von Binärsignalen, also eine (2-)ASK-Modulation kann durch eine einfache UND-Verknüpfung realisiert werden.

Der passive Lastmodulator am Beispiel eines ISO/IEC 14443 Typ A-Transponders wird mit einem durch einen Manchestercode modulierten Hilfsträgersignal angesteuert. Diese Ansteuerung führt beim aktiven Transponder mit ASK-Modulator zu einem Signal, welches aus jeweils vier Träger-Bursts pro Bit besteht und genau die gewünschten Modulationsseitenbänder erzeugt, wie sie in Abbildung 3.17 dargestellt sind. Lediglich der 13,56 MHz-Träger kann durch die ASK-Modulation nicht unterdrückt werden, was aber die Datenübertragung vom Transponder zum Lesegerät nicht weiter beeinflusst.

Der Einfluss der Antennengröße eines aktiven Transponders auf die Lesereichweite wurde in [fink-0211] empirisch ermittelt. Die Messungen wurden dabei mit einem handelsüblichen Lesegerät nach ISO/IEC 14443 durchgeführt.

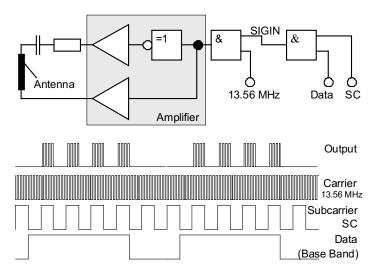


Abb. 3.21 Erzeugung einer aktiven Lastmodulation für ISO/IEC 14443 Typ A.

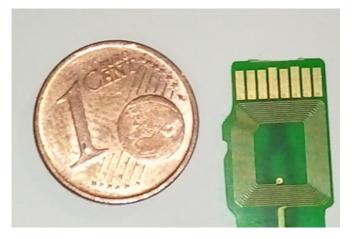


Abb. 3.22 Größenvergleich zwischen einer Transponderantenne in micro-SD Bauform und einer 1 Cent Euro-Münze.

Eine typische passive kontaktlose Chipkarte im ID1 Format kann hier mit dem exemplarisch verwendeten Lesegerät über eine Entfernung von etwa 7 cm ausgelesen werden. Ein NFCfähiges Mobiltelefon wurde in der NFC-Betriebsart "card emulation" über eine Entfernung von etwa 4 cm ausgelesen. Wird die Antennenfläche des Transponders auf 130 mm², was der typischen Fläche einer micro-SD Karte entspricht, verkleinert, so sinkt die Lesereichweite eines passiven Transponders auf unter einen Zentimeter. Der Transponder muss auf das Lesegerät gelegt werden, und kann unter Umständen gar nicht mehr gelesen werden. Wird solch ein kleiner Transponder in einem Gerät verbaut, zum Beispiel einem Mobiltelefon, so wird durch die zusätzliche Metallabschirmung ein Auslesen fast unmöglich gemacht. Unter Verwendung aktiver Lastmodulation ist es hingegen möglich, den kleinen Transponder auf eine Entfernung von sogar 10 cm auszulesen – weit mehr, als die Lesereichweite einer passiven kontaktlosen Chipkarte im ID1 Format auf demselben Lesegerät. Selbst im eingebauten Zustand in einem Mobiltelefon können noch einige Zentimeter Lesereichweite erreicht werden. Aktive Lastmodulation eignet sich daher vor allem für sehr kleine Transponder in Form von Speicherkarten, Schlüsselanhängern oder ähnlichen Bauformen, bei denen die Energieversorgung des Transponders durch eine Batterie sichergestellt werden kann [fink-0211], [fink-0411].

3.2.1.2.5 Subharmonische Verfahren

Unter der Subharmonischen einer sinusförmigen Spannung A mit definierter Frequenz f_A versteht man eine sinusförmige Spannung B, deren Frequenz f_B durch ganzzahlige Teilung aus der Frequenz f_A abgeleitet ist. Die Subharmonischen der Frequenz f_A sind also die Frequenzen $f_A/2$, $f_A/3$, $f_A/4$...

Bei den subharmonischen Übertragungsverfahren erhält man aus der im Transponder abgegriffenen Leser-Sendefreqenz f_A durch digitale Teilung eine zweite, meist um den Faktor zwei niedrigere Frequenz f_B . Zur Datenübertragung an das Lesegerät wird das Ausgangssignal f_B des Teilers mit dem Datenstrom des Transponders moduliert. Hierbei kann eine ASK-(On-Off-Keying im Takt der Daten) oder eine BPSK-Modulation (Umschaltung zwischen f_B und einem invertierten Signal \overline{f}_B im Takt der Daten) zum Einsatz kommen. Über einen Ausgangstreiber wird das modulierte Signal dann wieder in die Antenne des Transponders eingespeist.

Eine häufig verwendete Arbeitsfrequenz für subharmonische Systeme ist 128 kHz. Hieraus ergibt sich eine Transponder-Antwortfrequenz von 64 kHz.

Die Antenne der Transponder besteht aus einer Spule mit Mittenanzapfung, wobei an einem Ende die Spannungsversorgung abgegriffen wird. Am zweiten Anschluss der Spule wird das Rücksignal des Transponders eingespeist.

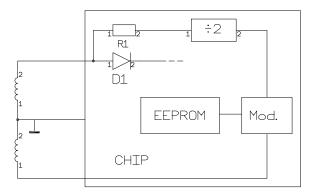


Abb. 3.23 Prinzipschaltung eines Transponders mit subharmonischer Rückfrequenz. Das empfangene Taktsignal wird durch zwei geteilt, mit den Daten moduliert und in eine Anzapfung der Transponderspule eingespeist.

3.2.2 Elektromagnetische Backscatter-Kopplung

3.2.2.1 Energieversorgung der Transponder

RFID-Systeme, die deutlich mehr als 1 m zwischen Lesegerät und Transponder überbrükken, werden als *Long-range-Systeme* bezeichnet. Diese werden auf den *UHF-Frequenzen* 868 MHz (Europa) und 915 MHz (USA), sowie auf den *Mikrowellenfrequenzen* 2,5 GHz und 5,8 GHz betrieben. Die kurzen Wellenlängen dieser Frequenzbereiche ermöglichen die Konstruktion von Antennen mit weitaus kleineren Abmessungen und besserem Wirkungsgrad, als dies auf Frequenzbereichen unter 30 MHz möglich wäre.

Um die zum Betrieb eines Transponders verfügbare Energie abschätzen zu können, berechnen wir zunächst die *Freiraumdämpfung* a_F in Abhängigkeit der Entfernung r zwischen dem Transponder und der Antenne des Lesegerätes, dem Gewinn G_T und G_R der Transponderund Leserantenne, sowie der Sendefrequenz f des Lesegerätes:

$$a_F = -147,6 + 20\log(r) + 20\log(f) - 10\log(G_T) - 10\log(G_R)$$
 [3.2]

Tabelle 3.7: Freiraumdämpfung a_F bei unterschiedlichen Frequenzen und Entfernungen. Als Gewinn der Transponderantenne wurde 1,64 (Dipol), als Gewinn der Leserantenne 1 (isotroper Strahler) angenommen.

Abstand r	868 MHz	915 MHz	2,45 GHz
0,3 m	18,6 dB	19,0 dB	27,6 dB
1 m	29,0 dB	29,5 dB	38,0 dB
3 m	38,6 dB	39,0 dB	47,6 dB
10 m	49,0 dB	49,5 dB	58,0 dB

Die Freiraumdämpfung ist ein Maß für das Verhältnis zwischen der von einem Leseregrät in den "freien Raum" ausgesendeten und der vom Transponder empfangenen HF-Leistung.

Mit heutiger Low-power-Halbleitertechnologie lassen sich Transponderchips mit einer Leistungsaufnahme von nicht mehr als 5 µW realisieren [friedrich]. Der Wirkungsgrad eines integrierten Gleichrichters kann im UHF- und Mikrowellenbereich mit 5 ... 25% angenommen werden [tanneberger]. Bei einem Wirkungsgrad von 10% benötigen wir damit zum Betrieb des Transponderchips eine Empfangsleistung von P_e = 50 µW am Anschluss der Transponderantenne. Dies bedeutet, dass bei einer Strahlungsleistung des Lesegerätes von $P_s = 0.5 \text{ W}$ EIRP die Freiraumdämpfung einen Wert von 40 dB $(P_s/P_e = 10000/1)$ nicht überschreiten darf, um an der Transponderantenne noch eine ausreichend große Leistung zum Betrieb des Transponders zu erhalten. Ein Blick auf Tabelle 3.7 zeigt, dass damit bei einer Sendefrequenz von 868 MHz immerhin eine Reichweite (Energiereichweite) von etwas über 3 m realisierbar wäre, bei 2,45 GHz könnte immerhin noch etwas über 1 m erreicht werden. Mit den heute in Europa für 868 MHz zugelassenen 2 W ERP (dies entspricht 3,28 W EIRP) wäre entsprechend der (gegenüber 0,5 W EIRP) um 8,16 dB höheren Sendeleistung eine maximale Freiraumdämpfung von 48,16 dB zulässig. Damit ließe sich mit den im Beispiel angenommenen Werten eine Energiereichweite von sogar 9 m erzielen. Bei einer größeren Leistungsaufnahme des Transponderchips würde sich die erzielbare Reichweite wieder entsprechend reduzieren. Entscheidend für den Betrieb des Transponderchips ist neben einer ausreichenden Empfangsleistung Pe allerdings auch, dass nach Impedanzanpassung zwischen Antenne und Transponderchip eine ausreichend große Spannung Ue am Gleichrichter und Spannungsvervielfacher des Transponderchips anliegt, um daraus eine für den Chip ausreichend hohe Versorgungsspannung erzeugen zu können. Nach dem Ohmschen Gesetz ($U_e = \sqrt{P_e \cdot |Z_e|}$) ist dabei eine möglichst hochohmige Eingangsimpedanz des Transponderchips, und damit auch der Ausgangsimpedanz der Antennen bzw. des Anpassnetzwerkes erstrebenswert.

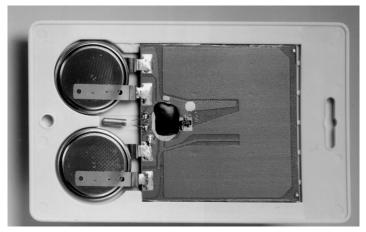


Abb. 3.24 Aktiver Transponder für den Frequenzbereich 2,45 GHz. Der Datenträger wird durch zwei Lithiumbatterien mit Energie versorgt. Die Mikrowellen-Antenne des Transponders ist als u-förmige Fläche auf der Leiterkarte zu erkennen. (Photo: Pepperl & Fuchs, Mannheim)

Um große Reichweiten bis zu 15 m zu erreichen oder aber auch Transponderchips mit einer größeren Leistungsaufnahme noch mit einer akzeptablen Reichweite betreiben zu können, verfügen Backscatter-Transponder häufig über eine Stützbatterie zur Energieversorgung des Transponderchips. Um die Batterie nicht unnötig zu belasten, verfügen die Mikrochips in der Regel über einen stromsparenden "power-down"- bzw. "stand-by"-Modus. Verlässt der Transponder das Feld eines Lesegerätes, so schaltet der Chip automatisch in den stromsparenden "power-down"-Mode. Die Stromaufnahme beträgt dann maximal noch einige µA. Erst durch ein ausreichend starkes Signal in Lesereichweite eines Lesegerätes wird der Chip erneut aktiv und nimmt den normalen Betrieb wieder auf. Die Batterie aktiver Transponder stellt jedoch in keinem Falle Energie zur Datenübertragung zwischen Transponder und Lesegerät zur Verfügung, sondern dient ausschließlich der Versorgung des Mikrochips. Zur Datenübertragung zwischen Transponder und Lesegerät wird ausschließlich die Energie des elektromagnetischen Feldes eingesetzt, welches vom Lesegerät ausgesendet wird.

3.2.2.2 Datenübertragung Transponder > Leser: Modulierter Rückstrahlquerschnitt

Aus der *RADAR-Technik* ist bekannt, dass elektromagnetische Wellen von Materie, deren Ausdehnung größer als etwa die halbe Wellenlänge der Welle ist, reflektiert werden. Die Wirksamkeit, mit der ein Objekt elektromagnetische Wellen reflektiert, wird durch dessen *Rückstrahlquerschnitt* beschrieben. Einen besonders großen Rückstrahlquerschnitt weisen Objekte auf, die zu der eintreffenden Wellenfront in Resonanz sind, wie dies zum Beispiel bei Antennen für die jeweilige Frequenz der Fall ist.

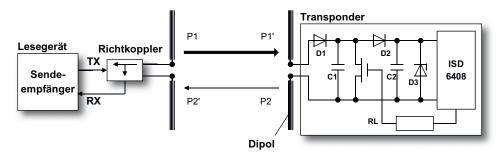


Abb. 3.25 Funktionsweise eines Backscatter-Transponders. Durch Umschalten des FET auf dem Chip wird die Impedanz des Chips "moduliert" [isd].

Von der Antenne des Lesegerätes wird eine Leistung P₁ abgestrahlt, wovon ein geringer Teil (Freiraumdämpfung) die Antenne des Transponders erreicht. Die am Transponder ankommende Leistung P₁' steht als HF-Spannung an den Anschlüssen der Antenne zur Verfügung und kann nach Gleichrichtung durch die Dioden D₁ und D₂ als Schaltspannung zur De-/Aktivierung des stromsparenden "power-down"-Modus verwendet werden. Als Dioden werden hier *low-barrier-Schottky-Dioden* verwendet, welche eine besonders niedrige Schwellenspannung aufweisen. Für kurze Reichweiten kann die gewonnene Spannung auch zur Energieversorgung ausreichend sein.

Ein Teil der ankommenden Leistung P_1 ' wird von der Antenne reflektiert und als Leistung P_2 zurückgesendet. Die *Reflexionseigenschaften* (= Rückstrahlquerschnitt) der Antenne können durch Ändern der an die Antenne angeschlossenen Last beeinflusst werden. Um Daten vom Transponder zum Lesegerät zu übertragen, wird ein der Antenne parallelgeschalteter zusätzlicher Lastwiderstand R_L im Takte des zu übertragenden Datenstromes ein- und ausgeschaltet. Die vom Transponder reflektierte (= rückgestrahlte) Leistung P_2 kann so in ihrer Amplitude moduliert werden (\rightarrow modulierter Rückstrahlquerschnitt, engl. *modulated backscatter*).

Die vom Transponder reflektierte Leistung P₂ wird in den freien Raum abgestrahlt. Ein geringer Teil davon (Freiraumdämpfung) wird von der Antenne des Lesegerätes aufgenommen. Das reflektierte Signal läuft daher in der Antennenleitung des Lesegerätes in "Rückwärtsrichtung" und kann unter Verwendung eines *Richtkopplers* ausgekoppelt und auf den Empfängereingang eines Lesegerätes geführt werden. Das um Zehnerpotenzen stärkere "vorwärtslaufende" Signal des Senders wird durch den Richtkoppler dabei weitestgehend unterdrückt.

Das Verhältnis zwischen der vom Lesegerät ausgesendeten und der vom Transponder zurückkommenden Leistung (P₁/P₂') kann anhand der Radargleichung abgeschätzt werden (siehe hierzu auch Kap. 4.2.5.4 "Wirksame Fläche und Rückstreuquerschnitt", S. 147).

3.2.3 Close coupling

3.2.3.1 Energieversorgung der Transponder

Close coupling Systeme sind für Reichweiten von 0,1 cm bis maximal 1 cm konzipiert. Die Transponder werden deshalb zum Betrieb in ein Lesegerät eingesteckt oder auf eine markierte Oberfläche gebracht ("touch & go").

Das Einstecken oder Auflegen des Transponders in/auf das Lesegerät ermöglicht die gezielte Platzierung der Transponderspule im *Luftspalt* eines Ringkerns oder U-Kerns. Die funktionelle Anordnung von Transponderspule und Leserspule entspricht dann der eines Transformators. Es entspricht hierbei die Leserspule der Primärwicklung und die Transponderspule der Sekundärwicklung eines Transformators. Durch einen hochfrequenten Wechselstrom in der Primärwicklung wird ein hochfrequentes magnetisches Feld in Kern und Luftspalt der Anordnung erzeugt, das auch die Transponderspule durchströmt. Dadurch wird eine Wechselspannung gleicher Frequenz in der Transponderspule induziert. Durch Gleichrichtung dieser Spannung kann eine Versorgungsspannung für den Chip erzeugt werden.

Da die in der Transponderspule induzierte Spannung U proportional zur Frequenz f des Erregerstromes ist, wird zur Energieübertragung eine möglichst hohe Frequenz gewählt. In der Praxis kommen dabei Frequenzen im Bereich von 1 ... 10 MHz zum Einsatz. Um die Verluste im Kern des Transformators gering zu halten, muss bei diesen Frequenzen geeignetes Ferritmaterial als Kernmaterial verwendet werden.

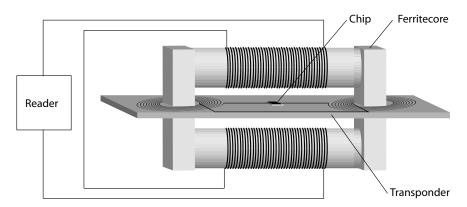


Abb. 3.26 Close coupling Transponder in einem Einsteckleser mit magnetischen Koppelspulen.

Aufgrund des im Gegensatz zu induktiv gekoppelten oder Mikrowellen-Systemen sehr guten Wirkungsgrades der Leistungsübertragung vom Lesegerät zum Transponder eignen sich Close coupling Systeme außerordentlich gut für den Betrieb von Chips mit hohem Energiebedarf. Anfang der 90er Jahre wurden *Close coupling Systeme* für kontaktlose Chipkarten mit Mikroprozessor und Chipkarten-Betriebssystem (Smart Card OS) eingesetzt. Die mechanischen und elektrischen Parameter kontaktloser *Close coupling Chipkarten* wurden hierzu in einer eigenen Norm, der *ISO/IEC 10536*, spezifiziert. Für den Energieverbrauch der Mikroprozessoren mussten nach dem damaligen Stand der Technik einige 10 mW Leistung bereitgestellt werden [sickert]. Ab Mitte der 90er Jahre wurden die Smart Coupling Chipkarten allerdings zunehmend durch induktiv gekoppelte Proximity Karten (ISO/IEC 14443) verdrängt. Seitdem Ende der 90er Jahre Proximity Karten auch mit Mikroprozessor verfügbar wurden, haben Close coupling Karten ihre Bedeutung jedoch gänzlich verloren, und werden daher heute für neue Anwendungen nicht mehr eingesetzt.

3.2.3.2 Datenübertragung Transponder > Leser

Zur magnetisch gekoppelten Datenübertragung vom Transponder zum Lesegerät wird auch bei Close coupling Systemen Lastmodulation mit Hilfsträger verwendet. Für Close coupling Chipkarten sind Hilfsträgerfrequenz und -modulation in ISO/IEC 10536 festgelegt.

Aufgrund der geringen Entfernung zwischen Lesegerät und Transponder kann bei den Close coupling Systemen auch *kapazitive Kopplung* zur Datenübertragung verwendet werden. Hierbei werden Plattenkondensatoren aus zueinander isolierten Koppelflächen gebildet, die im Transponder und Lesegerät so angeordnet werden, dass sie bei einem eingesteckten Transponder genau parallel zueinander platziert sind.

Auch dieses Verfahren findet bei Close coupling Chipkarten Verwendung. Die mechanischen und elektrischen Eigenschaften dieser Karten sind in *ISO/IEC 10536* definiert.

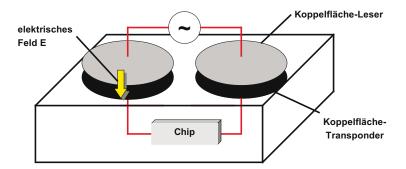


Abb. 3.27 Die kapazitive Kopplung bei Close coupling Systemen erfolgt zwischen zwei parallelen, in geringem Abstand zueinander angeordneten Metallflächen.

3.2.3.3 Close Coupling Chipkarten

Die vor allem in den 90er Jahren eingesetzen Close coupling Chipkarten wurden mittlerweile vollständig von anderen Systemen verdrängt. Die in ISO/IEC 10536 spezifizierten Eigenschaften sind aber zumindest aus technischer und technikhistorischer Sicht interessant, weshalb sie hier kurz vorgestellt werden sollen.

Bei den Close coupling Chipkarten kamen sowohl *induktive* (H1 ... 4) als auch *kapazitive Koppelelemente* (E1 ... 4) zum Einsatz. Die Anordnung der Koppelelemente wurde so gewählt, dass eine Close coupling Chipkarte in einem Einsteckleser in allen vier Lagen betrieben werden konnte.

Die Energieversorgung der Close coupling Chipkarte erfolgt über die vier induktiven Koppelelemente H1 ... H4. Das induktive Wechselfeld soll eine Frequenz von 4,9152 MHz aufweisen. Die Koppelelemente H1, H2 werden als Spulen, jedoch mit umgekehrtem Wickelsinn ausgeführt, sodass bei gleichzeitiger Speisung der Koppelelemente eine Phasendifferenz von 180° zwischen den dazugehörenden magnetischen Feldern F1 und F2 bestehen muss (z. B. durch U-Kern im Lesegerät). Analoges gilt für die Koppelelemente H3 und H4.

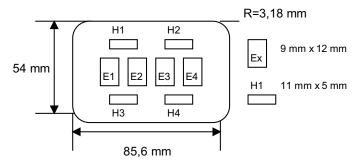


Abb. 3.28 Lage der kapazitiven (E1 – E4) und induktiven Koppelelemente (H1 – H4) einer Close coupling Chipkarte.

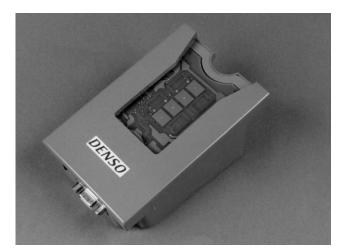


Abb. 3.29 Halb geöffnetes Lesegerät für Close coupling Chipkarten nach ISO/IEC 10536. In der Mitte des Einsteckschlitzes sind vier kapazitive Koppelflächen zu erkennen, umgeben von vier induktiven Koppelelementen (Spulen). (Foto: Denso Corporation, Japan – Aichi-ken)

Die Lesegeräte müssen so ausgelegt sein, dass mit jedem der magnetischen Felder F1 ... F4 eine Leistung von 150 mW an die kontaktlose Karte abgegeben werden kann. Über alle vier Felder zusammen dürfen von der Karte jedoch nicht mehr als 200 mW aufgenommen werden.

Zur Datenübertragung zwischen Karte und Lesegerät können wahlweise die induktiven oder kapazitiven Koppelelemente verwendet werden. Während einer laufenden Kommunikation darf jedoch nicht mehr zwischen den Kopplungsarten gewechselt werden.

Induktiv: Zur Übertragung von Daten über die Koppelfelder H1 ... H4 wird hier Lastmodulation mit Hilfsträger eingesetzt. Die Hilfsträgerfrequenz beträgt 307,2 kHz, die Modulation des Hilfsträgers erfolgt mit 180° PSK. Das Lesegerät ist so auszulegen, dass ein Lastwechsel von 10% der Grundlast an mindestens einem der Felder F1 ... F4 als Lastmodulationssignal erkannt werden kann. Der minimale Lastwechsel einer Karte ist mit 1 mW spezifiziert.

Kapazitiv: Hierzu werden paarweise die Koppelfelder E1, E2 oder E3, E4 eingesetzt. In beiden Fällen werden die paarweisen Koppelfelder durch ein Differenzsignal angesteuert. Die Spannungsdifferenz $U_{diff} = U_{E1} - U_{E2}$ soll so bemessen werden, dass an den Koppelflächen E1' und E2' des Lesegerätes ein Spannungspegel von mindestens 0,33 V zur Verfügung steht. Die Datenübertragung erfolgt durch *NRZ-Codierung* im Basisband (d. h. ohne Hilfsträger). Die Datenrate nach Reset beträgt 9600 bit/s; während des Betriebs kann jedoch auf eine höhere Datenrate umgeschaltet werden.

Zur Datenübertragung in Richtung Karte wird durch die Norm der induktive Kanal präferiert. Als Modulationsverfahren wird eine 90° PSK der Felder F1 ... F4 eingesetzt, wobei die Phasenlage aller Felder synchron umgetastet wird. Je nach Lage der Karte im Einsteckleser sind bei Modulation folgende Phasenbeziehungen zwischen den Koppelfeldern möglich:

Tabelle 3.8: Einstecklage 1 (Zustand A: ungetastet, Zustand A': getastet).

A	A'
ФБ	$1\Phi'F1 = \Phi F1 - 90^{\circ}$
$\Phi F3 = \Phi F1 + 90^{\circ}$	$\Phi'F3 = \Phi F3 + 90^{\circ}$

Tabelle 3.9: Einstecklage 2 (Zustand A: ungetastet, Zustand A': getastet).

A	A'
F1	$\Phi 'F1=\Phi 'F1+90^{\circ}$
$\Phi F3 = \Phi F1 - 90^{\circ}$	$\Phi `F3 = \Phi `F3 - 90°$

Die Datenübertragung erfolgt durch NRZ-Codierung im Basisband (d. h. ohne Hilfsträger). Die Datenrate nach Reset beträgt 9600 bit/s; während des Betriebs kann jedoch auf eine höhere Datenrate umgeschaltet werden.

3.2.4 Elektrische Kopplung

3.2.4.1 Energieversorgung passiver Transponder

Bei *elektrisch* (d. h. *kapazitiv*) gekoppelten Systemen wird durch das Lesegerät ein starkes, hochfrequentes *elektrisches Feld* erzeugt. Die Antenne des Lesegerätes besteht dabei aus einer großen, elektrisch leitfähigen Fläche (*Elektrode*), in der Regel eine Metallfolie oder eine Metallplatte. Wird an die Elektrode eine hohe, hochfrequente Spannung angelegt, so bildet sich zwischen der Elektrode und dem Erdpotenzial (ground) ein hochfrequentes elektrisches Feld aus. Die hierzu benötigten Spannungen in der Größenordnung einiger hundert bis zu einigen tausend Volt werden im Lesegerät durch Spannungsüberhöhung in einem resonanten Schwingkreis erzeugt, welcher durch eine Spule L_1 im Lesegerät, sowie der Parallelschaltung einer internen Kapazität C_1 und der zwischen der Elektrode und dem Erdpotenzial wirksamen Kapazität C_{R-GND} gebildet wird. Die Resonanzfrequenz des Schwingkreises entspricht dabei der Sendefrequenz des Lesegerätes.

Die Antenne des Transponders besteht aus zwei leitfähigen, in einer Ebene liegenden Flächen (Elektroden). Wird der Transponder in das elektrische Feld des Lesegerätes gebracht, so entsteht zwischen den beiden Transponderelektroden eine eletrische Spannung, welche zur Spannungsversorgung des Transponderchips verwendet wird.

Da sowohl zwischen dem Transponder und der Sendeantenne (C_{R-T}) als auch zwischen der Transponderantenne und dem Erdpotenzial (C_{T-GND}) eine Kapazität wirksam ist, kann das Ersatzschaltbild für eine elektrische Kopplung vereinfachend als *Spannungsteiler* mit den Elementen C_{R-T} , R_L (Eingangswiderstand des Transponders) und C_{T-GND} betrachtet werden (siehe Abbildung 3.32). Durch das Berühren einer der Elektroden des Transponders wird die Kapazität C_{T-GND} und damit auch die *Lesereichweite* deutlich größer.

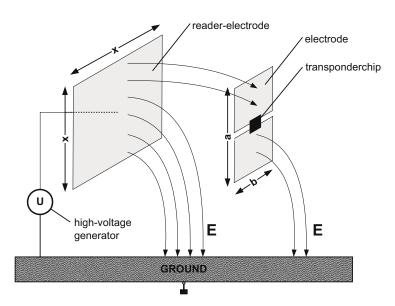


Abb. 3.30 Ein elektrisch gekoppeltes System verwendet elektrische (elekrostatische) Felder zur Energie- und Datenübertragung.

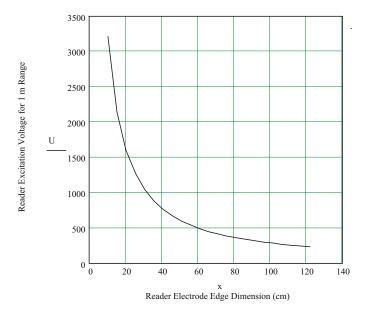


Abb. 3.31 Erforderliche Elektrodenspannung zum Auslesen eines Transponders mit der Elektrodengröße a·b = $4.5 \cdot 7 \text{ cm}^2$ (Bauform entsprechend einer Chipkarte), in 1 m Entfernung (f = 125 kHz).

Die in den Elektrodenoberflächen des Transponders fließenden Ströme sind sehr klein. An die Leitfähigkeit des Elektrodenmaterials werden daher keine besonderen Anforderungen

gestellt. Neben den üblichen Metalloberflächen (*Metallfolie*) können die Elektroden daher auch aus leitfähigen Farben (z. B. einer *Silberleitpaste*) oder einer *Graphitbeschichtung* [bistatix] hergestellt werden.

3.2.4.2 Datenübertragung Transponder > Lesegerät

Wird ein elektrisch gekoppelter Transponder in das Ansprechfeld eines Lesegerätes gebracht, so wirkt der Eingangswiderstand R_L des Transponders über die zwischen der Leserund der Transponderelektrode wirksame Koppelkapazität C_{R-T} auf den Schwingkreis des Lesegerätes und bedämpft diesen geringfügig. Durch das Ein- und Ausschalten eines Modulationswiderstandes R_{mod} im Transponder kann die auftretende Dämpfung zwischen zwei Werten verändert werden. Das Ein- und Ausschalten des Modulationswiderstandes R_{mod} erzeugt dadurch eine Amplitudenmodulation der an L_1 und C_1 anliegenden Spannung durch den entfernten Transponder. Durch das Ein- und Ausschalten des Modulationswiderstandes R_{mod} im Takt von Daten können diese an das Lesegerät übertragen werden. Dieses Verfahren wird als *Lastmodulation* bezeichnet.

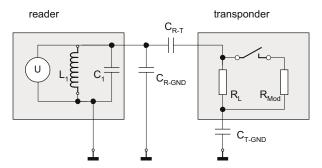


Abb. 3.32 Ersatzschaltbild für ein elektrisch gekoppeltes RFID-System.

3.3 Sequentielle Verfahren

Findet die Daten- und Energieübertragung vom Lesegerät zum Datenträger zeitversetzt mit der Datenübertragung vom Transponder zum Lesegerät statt, so handelt es sich um ein sequentielles Verfahren (SEQ).

Unterscheidungsmerkmale zwischen SEQ- und anderen Systemen wurden bereits im vorhergehenden Kapitel 3.2 "Voll- und Halbduplexverfahren", S. 45, dargestellt.

3.3.1 Induktive Kopplung

3.3.1.1 Spannungsversorgung des Transponders

Sequentielle Systeme mit induktiver Kopplung werden ausschließlich auf Frequenzen unter 135 kHz betrieben. Zwischen der Spule des Lesegerätes und der Transponderspule besteht eine transformatorische Kopplung. Die in der Transponderspule durch Einwirkung des

Wechselfeldes vom Lesegerät induzierte Spannung wird gleichgerichtet und steht als Versorgungsspannung zur Verfügung.

Um einen hohen Wirkungsgrad der Energieübertragung zu erreichen, muss auf exakten Abgleich der Transponderresonanzfrequenz auf die Frequenz des Lesegerätes sowie auf eine große Güte der Transponderspule geachtet werden. So enthalten die Transponder einen "onchip" trimm capacitor zum Ausgleich von Fertigungstoleranzen der Resonanzfrequenz.

Im Gegensatz zu den Voll- und Halbduplexsystemen wird jedoch bei den sequentiellen Systemen der Sender des Lesegerätes nicht dauernd betrieben. Die während des Sendebetriebes zum Transponder übertragene Energie dient dazu, einen *Ladekondensator* als Energiespeicher aufzuladen. Der Chip des Transponders wird während des Lademodus in einen Standby- oder Stromsparmodus geschaltet, wodurch die empfangene Energie fast vollständig zur Aufladung des Ladekondensators verwendet wird. Nach Ablauf einer festgelegten Ladezeit wird der Sender des Lesegerätes wieder abgeschaltet.

Die im Transponder gespeicherte Energie wird dazu verwendet, eine Antwort an das Lesegerät zu generieren. Aus der hierzu nötigen Betriebsspannung und Stromaufnahme des Chips kann die Mindestkapazität des erforderlichen Ladekondensators berechnet werden:

$$C = \frac{Q}{U} = \frac{I \cdot t}{[V_{\text{max}} - V_{\text{min}}]}$$
 [3.3]

Tabelle 3.10: Bedeutung der Formelzeichen aus Formel 3.3.

V _{max} ; V _{min}	Grenzwerte der Betriebsspannung, die nicht überschritten werden dürfen
I	Stromaufnahme des Chips während des Betriebes
t	Benötigte Zeit zur Übertragung der Daten, vom Transponder zum Lesegerät

Als Beispiel ergibt sich aus den Anforderungen $I=5~\mu A,~t=20~msec,~V_{max}=4,5~V~und~V_{min}=3,5~V~ein~Ladekondensator~von~C=100~nF~[schürmann-93].$

3.3.1.2 Vergleich zwischen FDX-/HDX- und SEQ-Systemen

Die unterschiedlichen Verhältnisse bei Voll-/Halbduplex- (FDX-/HDX-) und sequentiellen (SEQ-) Systemen sind in Abbildung 3.33 dargestellt.

Da bei den Vollduplexsystemen die Energieübertragung vom Lesegerät zum Transponder gleichzeitig mit der Datenübertragung in beiden Richtungen stattfindet, befindet sich der Chip ständig im Betriebszustand. Um die übertragene Energie optimal nutzen zu können, wird eine *Leistungsanpassung* zwischen der Transponderantenne als Stromquelle und dem Chip als Verbraucher angestrebt. Bei exakter Leistungsanpassung steht dem Chip jedoch nur die Hälfte der Quellenspannung (= Leerlaufspannung der Spule) zur Verfügung. Um die verfügbare Betriebsspannung zu erhöhen, kann nur die Impedanz (= Lastwiderstand) des Chips vergrößert werden, was jedoch gleichbedeutend mit einer Verringerung der Leistungsaufnahme ist.

Bei der Konzipierung von Vollduplexsystemen muss also immer ein Kompromiss zwischen Leistungsanpassung (maximale Leistungsaufnahme Pchip bei Uchip = ½ U_Q) und Spannungsanpassung (minimale Leistungsaufnahme Pchip bei maximaler Spannung $U_{chip} = U_Q$) gefunden werden.

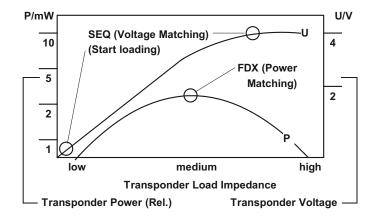


Abb. 3.33 Vergleich der induzierten Transponderspannung bei FDX-/HDX- und SEQ-Systemen [schürmann-93].

Völlig anders stellt sich die Situation bei Sequentiellen Systemen dar: Während des Ladevorgangs befindet sich der Chip in einem Standby- oder Stromsparmodus, sodass so gut wie keine Leistung durch den Chip aufgenommen wird.

Der Ladekondensator ist zu Beginn des Lademodus vollkommen entladen und stellt für die Spannungsquelle deshalb eine sehr niederohmige Last dar (Abbildung 3.33: Start loading). In diesem Zustand fließt der größtmögliche Strom in den Ladekondensator, die Spannung geht jedoch gegen null (= Stromanpassung). Mit fortschreitender Aufladung des Ladekondensators nimmt der Ladestrom, einer e-Funktion folgend, immer weiter ab und wird bei vollständiger Ladung des Kondensators zu null. Der Zustand des geladenen Kondensators entspricht einer Spannungsanpassung an die Transponderspule.

Gegenüber einem Voll-/Halbduplexsystem ergeben sich daraus folgende Vorteile bei der Energieversorgung des Chips:

- Für den Betrieb des Chips steht die volle Quellenspannung der Transponderspule zur Verfügung. Damit ist die zur Verfügung stehende Betriebsspannung maximal doppelt so groß wie bei einem vergleichbaren Voll-/Halbduplexsystem.
- Die dem Chip zur Verfügung stehende Energie wird nur durch die Kapazität des Ladekondensators sowie die Ladezeit bestimmt. Beide Werte können theoretisch (!) beliebig
 groß gewählt werden. Bei Voll-/Halbduplexsystemen ist die maximale Leistungsaufnahme des Chips durch den Punkt der Leistungsanpassung unveränderlich (d. h. durch Spulengeometrie und Feldstärke H vorgegeben).

3.3.1.3 Datenübertragung Transponder > Leser

Ein vollständiger Lesezyklus besteht bei sequentiellen Systemen aus zwei Phasen, der Aufladephase und der Lesephase.

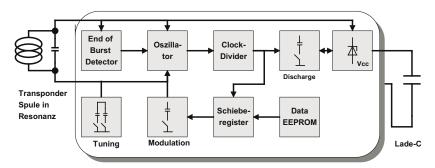


Abb. 3.34 Blockschaltbild eines sequentiellen Transponders des Texas Instuments TIRIS®-Systems, mit induktiver Kopplung.

Das Ende der Ladephase wird durch einen "end-of-burst detector" detektiert, welcher den Spannungsverlauf an der Transponderspule überwacht und so das Abschalten des Lesefeldes erkennt. Mit dem Ende der Ladephase wird ein Oszillator auf dem Chip gestartet, welcher den aus der Transponderspule gebildeten Schwingkreis als frequenzbestimmendes Bauteil verwendet. Von der Transponderspule wird ein schwaches magnetisches Wechselfeld erzeugt, welches durch das Lesegerät empfangen werden kann. Gegenüber einem Voll-/Halbduplexsystem ergibt sich damit ein verbesserter Signal-Störabstand von typisch 20 dB, was sich positiv auf die bei sequentiellen Systemen erzielbaren Reichweiten auswirkt.

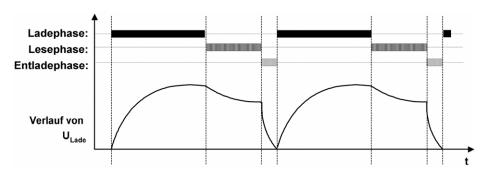


Abb. 3.35 Spannungsverlauf am Ladekondensator eines SEQ-Transponders mit induktiver Kopplung während des Betriebs

Die Sendefrequenz des Transponders entspricht der Resonanzfrequenz der Transponderspule, welche zum Produktionszeitpunkt auf die Sendefrequenz des Lesegerätes abgeglichen wurde.

Um das erzeugte HF-Signal leistungslos modulieren zu können, wird dem Resonanzschwingkreis im Takt des Datenflusses ein zusätzlicher Modulationskondensator parallelgeschaltet. Aus der daraus resultierenden Frequenzumtastung der Resonanzfrequenz entsteht eine 2-FSK-Modulation.

Nach Aussendung aller Daten wird der Entlademodus (discharge) aktiviert, um den Ladekondensator vollständig zu entladen. Dadurch kann ein sicherer Power-On-Reset mit dem nächsten Ladezyklus gewährleistet werden.

3.3.2 Oberflächenwellen-Transponder

Akustische *Oberflächenwellen-Bauelemente* (*OFW*, engl. surface acoustic wave devices – SFW) beruhen auf dem *piezoelektrischen Effekt*⁵ sowie auf der oberflächengebundenen Ausbreitung elastischer (= akustischer) Wellen mit niedriger Geschwindigkeit. Oberflächenwellen-Transponder werden auf Mikrowellenfrequenzen, üblicherweise im ISM-Bereich 2,45 GHz, betrieben.

Auf piezoelektrischen Substraten lassen sich mit planaren Elektrodenstrukturen elektroakustische Wandler (*Interdigitalwandler*) und *Reflektoren* realisieren. Als Substrat dient hierfür in der Regel *Lithiumniobat* oder auch *Lithiumtantalat*. Die Herstellung der Elektrodenstrukturen geschieht durch fotolithografische Verfahren, wie sie auch in der Mikroelektronik zur Herstellung integrierter Schaltungen verwendet werden.

Der prinzipielle Aufbau eines Oberflächenwellen-Transponders ist in Abbildung 3.36 dargestellt. Am Ende eines länglichen piezoelektrischen Substrats wird eine fingerartige Elektrodenstruktur – der Interdigitalwandler – aufgebracht, an dessen Sammelschiene eine *Dipolantenne* für die Arbeitsfrequenz angebracht wird. Der Interdigitalwandler wird als Wandler zwischen elektrischen Signalen und akustischen Oberflächenwellen eingesetzt. Ein an der Sammelschiene angelegter elektrischer Impuls bewirkt wegen des piezoelektrischen Effekts zwischen den Elektroden (Fingern) eine mechanische Verformung an der Oberfläche des Substrates, die sich als Oberflächenwelle (Rayleigh-Welle) in beiden Richtungen ausbreitet. Die Ausbreitungsgeschwindigkeit liegt bei den gebräuchlichen Substraten zwischen 3000 und 4000 m/s. Eine in den Wandler einlaufende *Oberflächenwelle* verursacht umgekehrt, durch den piezoelektrischen Effekt, einen elektrischen Impuls an der Sammelschiene des Interdigitalwandlers.

Auf die restliche Länge des Oberflächenwellen-Transponders werden einzelne Elektroden aufgebracht. Die Elektrodenkanten bilden einen Reflektorstreifen und reflektieren einen kleinen Teil einer einlaufenden Oberflächenwelle. Reflektorstreifen werden üblicherweise aus Aluminium hergestellt, es sind aber auch Reflektorstreifen in Form geätzter Rillen verwendbar [meinke].

Ein durch ein Lesegerät erzeugter hochfrequenter *Abtastpuls* wird von der Dipolantenne des Transponders in den Interdigitalwandler gespeist und so in eine akustische Oberflächenwel-

Wird ein (Ionen-)Kristall in bestimmten Richtungen elastisch deformiert, so treten Oberflächenladungen und damit elektrische Spannungen am Kristall auf (Anwendung: Piezo-Feuerzeug). Umgekehrt führt das Anlegen einer Oberflächenladung am Kristall zu einer elastischen Verformung im Kristallgitter (Anwendung: Piezosummer).

le⁶ umgewandelt, welche das Substrat in Längsrichtung durchläuft. An jedem einzelnen der über das Substrat verteilten Reflektorstreifen wird ein Teil der Oberflächenwelle reflektiert, während der verbleibende Anteil der Oberflächenwelle bis zum Ende des Substrates weiterläuft, um dort absorbiert zu werden.

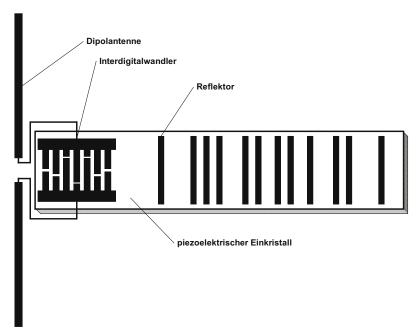


Abb. 3.36 Prinzipieller Aufbau eines OFW-Transponders. Auf den piezoelektrischen Kristall werden der Interdigitalwandler sowie Reflektoren aufgebracht.

Die reflektierten Wellenanteile laufen zurück zum Interdigitalwandler, wo sie in eine hochfrequente Pulsfolge umgewandelt und von der Dipolantenne abgestrahlt werden. Diese Pulsfolge kann durch das Lesegerät empfangen werden. Die Anzahl der empfangenen Pulse entspricht der Anzahl der Reflektorstreifen auf dem Substrat. Ebenso ist der zeitliche Abstand zwischen den einzelnen Impulsen proportional dem räumlichen Abstand der Reflektorstreifen auf dem Substrat, sodass durch die räumliche Anordnung der Reflektorstreifen eine binäre Ziffernfolge dargestellt werden kann.

Aufgrund der langsamen Ausbreitungsgeschwindigkeit der Oberflächenwelle auf dem Substrat trifft der erste Antwortpuls erst nach einer Totzeit von etwa 1,5 ms nach Aussendung des Abtastpulses beim Lesegerät ein. Daraus ergeben sich entscheidende Vorteile für den Empfang der Pulse:

Reflexionen des Abtastpulses an Metalloberflächen der Umgebung laufen mit Lichtgeschwindigkeit zur Antenne des Lesegerätes zurück. Eine Reflexion in 100 m Entfernung

⁶ Die Frequenz der Oberflächenwelle entspricht der Trägerfrequenz des Abtastimpulses (z. B. 2,45 GHz)! Die Trägerfrequenz der reflektierten und zurückgesendeten Pulsfolge entspricht demzufolge der Sendefrequenz des Abtastpulses.

zum Lesegerät träfe somit 0,6 ms nach Aussendung an der Antenne des Lesegerätes ein (Laufzeit hin & rück, dabei wird das Signal um > 160 dB gedämpft). Bis zum Eintreffen des Transpondersignals nach 1,5 ms sind deshalb alle Reflektionen aus der Umgebung des Lesegerätes lange abgeklungen, sodass es hierdurch nicht zu Verfälschungen der Pulsfolge kommen kann [dziggel].

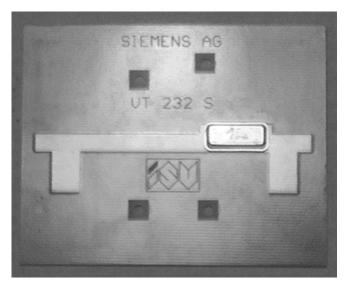


Abb. 3.37 Oberflächenwellen-Transponder für den Frequenzbereich 2,45 GHz mit Mikrostripleitung als Antenne. Der Piezokristall selbst ist in einem zusätzlichen Metallgehäuse, vor Umgebungseinflüssen geschützt, untergebracht. (Bild: Siemens AG, ZT KM, München)

Speicherbare Datenmenge und Datenübertragungsgeschwindigkeit von Oberflächenwellen-Transpondern hängen von der Größe des Substrates sowie von den realisierbaren Mindestabständen zwischen den Reflektorstreifen auf dem Substrat ab. In der Praxis werden etwa 16 ... 32 bit mit einer Datenrate von 500 kbit/s übertragen [sofis].

Die Reichweite von Oberflächenwellen-Systemen hängt im Wesentlichen von der Sendeleistung des Abtastpulses ab und kann nach der Radargleichung (siehe Kap. 4.3.3 "Funktionsschema von OFW-Transpondern", S. 177) abgeschätzt werden. Bei der zugelassenen Sendeleistung im 2,45 GHz ISM-Frequenzbereich ist mit einer Reichweite von 1 ... 2 m zu rechnen.

3.4 Near Field Communication (NFC)

Bei Near Field Communication (NFC) handelt es sich auf den ersten Blick nicht um ein RFID-System, sondern um eine drahtlose Datenschnittstelle zwischen elektronischen Geräten, so wie auch *Infrarot* oder das bekannte *Bluetooth. NFC* bietet darüber hinaus jedoch zusätzliche Eigenschaften, die es auch im Zusammenhang mit RFID-Systemen interessant machen.

Zur Datenübertragung zwischen zwei NFC-Interfaces werden hochfrequente magnetische Wechselfelder im Frequenzbereich 13,56 MHz eingesetzt. Die für eine NFC-Datenübertragung typische Kommunikationsreichweite von maximal etwa 20 cm bedingt, dass sich der jeweile Kommunikationspartner im Nahfeld der Sendeantenne befindet, woraus die Bezeichnung "near field communication" abgeleitet ist.

Das physikalische Prinzip einer Datenübertragung zwischen zwei NFC-Interfaces ist in Abbildung 3.38 dargestellt. Ein NFC-Interface verfügt über einen 13,56 MHz-Sender sowie über einen 13,56 MHz-Empfänger, die wechselweise auf die Antenne geschaltet werden. Die Antenne ist als großflächige Spule oder Leiterschleife ausgeführt.

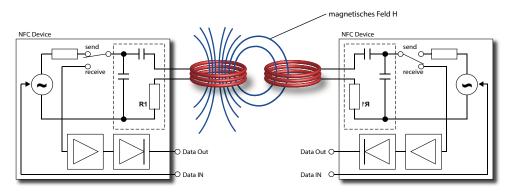


Abb. 3.38 Im Active Mode senden die NFC-Interfaces abwechselnd ein magnetisches Feld zur Datenübertragung aus.

Bei der Kommunikation zwischen zwei NFC-Interfaces kann das einzelne NFC-Interface unterschiedliche Funktionen einnehmen, die eines *NFC-Initiators* (Master Device) oder die des *NFC-Targets* (Slave Device). Der Aufbau einer Kommunikation wird immer vom NFC-Initiator eingeleitet. Bei einer NFC-Kommunikation wird außerdem zwischen zwei unterschiedlichen Betriebsarten unterschieden, dem active Mode und dem passive Mode.

3.4.1 Active Mode

Um im active Mode Daten zwischen zwei NFC-Interfaces übertragen zu können, aktiviert zunächst eines der NFC-Interfaces seinen Sender und übernimmt damit die Rolle des NFC-Initiators. Durch den in der Antenne fließenden hochfrequenten Strom wird ein magnetisches Wechselfeld H erzeugt, welches sich um die Antennenschleife ausbreitet. Die in der Nähe befindliche Antennenschleife eines zweiten NFC-Interfaces wird dabei von einem Teil des erzeugten magnetischen Feldes durchflossen, wodurch in der Antennenschleife eine Spannung u induziert wird, die vom Empfänger des zweiten NFC-Interfaces detektiert werden kann. Empfängt ein NFC-Interface Signale und entsprechende Kommandos eines NFC-Initiators, so nimmt dieses NFC-Interface automatisch die Rolle des NFC-Targets ein.

Zur Übertragung von Daten zwischen den NFC-Interfaces wird das ausgesendete magnetische Wechselfed in der Amplitude moduliert (ASK-Modulation), so wie es auch bei der

Datenübertragung von einem RFID-Lesegerät zu einem Transponder üblich ist. Der Unterschied zwischen einem NFC-Target im active Mode und einem RFID-Transponder besteht jedoch darin, dass der Transponder über das magnetische Wechselfeld noch mit Energie zum Betrieb des Mikrochips versorgt werden muss, während das NFC-Interface über die Spannungsversorgung eines elektronischen Geräts, in dem es verbaut ist, mit Energie versorgt wird.

Um nun Daten in umgekehrter Richtung, also vom NFC-Target zum NFC-Initiator zu übertragen, wird die Senderichtung umgekehrt. Dies bedeutet, dass das NFC-Target nun den Sender aktiviert und der NFC-Initiator in den Empfangsbetrieb wechselt. Die beiden NFC-Interfaces erzeugen also wechselweise ein magnetisches Feld, auf dem die Daten ausschließlich vom Sender in Richtung Empfänger übertragen werden.

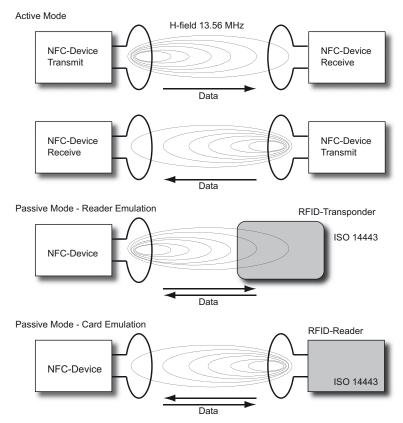


Abb. 3.39 NFC unterscheidet zwischen drei unterschiedlichen Betriebsmodi: Active Mode, und passive Mode in den Betriebsarten Reader Emulation und Card Emulation.

3.4.2 Passive Mode

Auch beim passive Mode erzeugt der NFC-Initiator zur Datenübertragung an das NFC-Target ein magnetisches Wechselfeld, dessen Amplitude im Takt der zu übertragenden Daten moduliert wird (ASK-Modulation). Nach der Übertragung eines Datenblocks wird das Feld

jedoch nicht abgeschaltet, sondern unmoduliert weiterhin abgestrahlt. Das NFC-Target kann nun durch das Erzeugen einer *Lastmodulation* Daten an den NFC-Initiator übertragen. Auch das Verfahren der Lastmodulation kennen wir bereits von RFID-Systemen.

Die Verwendung dieses Verfahrens bei NFC-Interfaces bringt eine Reihe von Vorteilen und interessanten Optionen für den praktischen Betrieb mit sich. So kann etwa die Verteilung der Rollen in einer NFC-Kommunikationsbeziehung zwischen den beiden NFC-Interfaces auch verhandelt werden und jederzeit wechseln. Ein NFC-Interface mit schwacher Energieversorgung, wie durch einen Akku mit geringer Kapazität, kann zum Beispiel die Rolle des NFC-Targets aushandeln und übernehmen, um durch die Datenübertragung per Lastmodulation Energie zu sparen.

Ein NFC-Interface in der Rolle des Targets kann neben anderen NFC-Interfaces auch eine Kommunikationsbeziehung zu kompatiblen passiven Transpondern (z.B. nach ISO/IEC 14443) aufbauen, die dann vom NFC-Target mit Energie versorgt werden und per Lastmodulation Daten an das NFC-Interface übertragen. Diese Option ermöglicht, mit elektronischen Geräten, die mit einem NFC-Interface ausgerüstet sind, wie zum Beispiel einem NFC-Mobiltelefon, verschiedene Transponder wie Smart-Label oder eTickets zu lesen oder zu beschreiben. Da sich das NFC-Interface hier wie ein RFID-Leser verhält, bezeichnet man diese Option auch als "reader-mode" oder "*reader-emulation-mode*".

Bringt man ein NFC-Interface in die Nähe eines kompatiblen RFID-Lesegerätes (z.B. nach ISO/IEC 14443), so ist das NFC-Interface in der Lage, auch mit einem Lesegerät zu kommunizieren. Hierzu übernimmt das NFC-Interface die Rolle eines NFC-Targets und kann dann per Lastmodulation Daten an das Lesegerät übertragen. Diese Option ermöglicht es einem RFID-Lesegerät, mit einem elektronischen Gerät mit NFC-Interface, zum Beispiel einem NFC-Mobiltelefon, Daten auszutauschen. Das elektronische Gerät verhält sich aus Sicht des Lesegerätes wie eine kontaktlose Chipkarte, daher bezeichnet man diese Option auch als "card-mode" oder "card-emulation-mode".

Symbole	Alufolie 276
1999/5/EG 201, 208, 210, 714	American Express 641
1-bit-Transponder 34	amorphes Metall 40, 43, 135
2-FSK 226	Amplitude 219
2-FSK-Modulation 71	Amplitudenmodulation 117, 222
4-Kanalplan 430	Anechoic Chamber 559
•	Angreifer 518
Α	Angriff 32
A/D-Wandler 482	Angriffsversuch 315
Abfallentsorgung 679	Anharmonische 45
Abfrageimpuls 177	animal-identification 335, 708
Abhören 278	Anisotroper Klebstoff 592
Abhörreichweite 297	Anpassschaltung 509
Abschertest 604	Stückliste 735
Abschirmen des Transponders 276	Anpassung 166
Absorberfolie 618	Leistung 68
Absorberkammer 559	Spannung 69
Absorptionsrate 30, 197	Strom 69
Abtastpuls 71	Ansprechbereich 102, 156
Access Kommandos 437	Ansprechfeldstärke 82, 97, 168, 539
Access-Register 461, 469	Antenne 144
ACK Kommando 437	Dipol 71
Acquirer 639	-dipol 609
Activation Energy 559	Draht 587
activation energy 563, 567	E-Feld 609
Activation Sensitivity 559	geätzt 587
AddRoundKey 324	gedruckt 587
Administration-Code 467	H-Feld 609
Adresslogik 456	Schleifenantenne 609
Advanced Encryption Standard 321	Antennengewinn 302
Advanced Mode 340	Antennengruppe 303
Advanced Transponder 339	Antennengüte 615, 621
AES 321	Antennenradius 81
AFC 626	Antennenspule 507
AIM 701	Antennenstrom 104
Deutschland 701	Anticollision Frame 364
Aktivator 34	Antikollisionsalgorithmus 119, 310, 501
aktive Lastmodulation 54, 305	Antikollisionsverfahren 29, 252
aktiver Transponder 15, 25, 95, 305	Antwortpuls, Phasenlage 178, 485
Aktivierungsenergie 559, 563	Anzugsbolzen 398, 684
Aktivierungsfeld 336	aperture, scatter~ 143
Akustomagnetisches Sicherungssystem 44	Application Code (MAD) 466
Ali Baba 315	Applikation 465
ALOHA-Verfahren 255, 257	Applikationssoftware 489, 496, 517

16 Register

Applikationsverzeichnis 466 MAD 466	Betriebsspannung 95 Betriebssystem 8, 471
Arbeitspunkt 529	auf Chipkarte 474, 475
Arbiträrsignalgenerator 534, 541	Biegungsmessung 485
Armbanduhr 641	
	binary-search-tree-Algorithmus 266, 311
Artikelsicherung 34	Binary-Search-Verfahren 256
elektromagnetisches Verfahren 40	Biometrie 5
Frequenzteiler-Verfahren 39	Bitcodierung 263
Mikrowellensysteme 37	Bitrate 503
RF-Verfahren 34	Blindwiderstand 612
Artikelsicherungssystem 27	Blockchiffre 320
ASK 45	Blockertag 311
ASK-Modulation 222, 492	Blockieren des Lesegerätes 278
Ätztechnik 22, 586	Blockschaltbild Lesegerät 503
Auslöschung 167	Blockstruktur 460
Ausschwingen 127	Bluetooth 73
Ausspähen 275	Bodenantenne 682
Ausstanzen 608	Bolus 668
AuthComm Kommando 438	Bondpads 578
Authenticate Kommando 438	Börsensystem 635
Authentifizierung 29, 31, 329, 460, 674	Broadcast 250
Authentizität 316	Brückengleichrichter 293
Auto-ID-Center 414	Brückenkapazität 622
Autoindustrie 691	Bump 590
Automatic fare collection 626	Bundesnetzagentur 211
Automatic Vehicle Identification 705	Bürgerverband 274
Autoschlüssel 17	Business Solutions 703
AWG 534, 535, 541	Busy-Signal 657
В	C
Backlack 582, 597	CALYPSO 637
Backscatter 61	Capture-Effekt 260
Backscattermodulator 450	Card Loading Effect 538
Backscattersignal 297	Card-Emulation-Mode 76, 522
Backscatter-System 25, 142, 156	carrier 222
Backscatter-Transponder 209	Carrier-circuit 219
Bandbreite 126, 195	CBC 326
Barcode 2, 418	CBC-MAC 319
Barcodeleser 404	CDMA 251
Basic Access Control Protocol 331	CEN TC225 447
Basisbandsignal 219, 492, 500	CEN/TR 16669 447
Batterie 26, 166	CEN/TR 16670 447
batteriegestützter Transponder 54 Pahälteridentifikation 678	CEN/TR 16671 447
Behälteridentifikation 678	CEN/TR 16672 447
Beschleunigungsmessung 485	CEN/TR 16673 447
Betriebsfrequenz 103	CEN/TR 16674 447

CEN/TR 16684 447	Datenblock 403
CEN/TS 16685 447	Datenobjekt 404
CEPT 199, 200, 210	Datenschutz 444
CERP 200	Datensicherheit 444
CE-Zeichen 201, 210	Datenträger 11
Dokumentation 714	Datentransceiver 516
Chaining 502	Datenübertragung 115, 219
Chaining-Verfahren 324	DBP-Code 220
Challenge Kommando 438	Deaktivator 35
Channel 219	Deaktivierungsanlage 402
Charakterisierung 527, 537	Deaktivierungsquote 402
Chiffre	Debit-System 638
one-time-pad 326	Dechiffrieren 317
sequentiell 317	Deckfolie 599
Vernam 326	Dehnungsmessung 485
Chiffrieren 317	Demodulation 219, 222, 450, 454
Chip 11	Demodulator 219, 222, 430, 434 Demodulator 219
	Denial of Service 275
Chip-Impedanzmessung 527	
Chipkarte 6	Angriff 310
close-coupling 344	Dense-Reader-Mode 415, 428
mit Mikroprozessor 8	DES 321, 476
Chipkartenbetriebssystem 474, 475	Detektionsrate 34, 400
cipher block chaining 326	Dethloff, Jürgen 625
Close coupling Chipkarte 344	Deutsche Bahn A. G. 645
Close coupling System 24, 61	Device under Test 530
Close-coupling 626	DFT 536, 544
CNC-Technik 683	Die Bonder 588
Code, EAN 2	Diebstahlsicherung 14, 34, 204, 208
Codemultiplexverfahren 251	Dielektrikum 276
Codierung im Basisband 219	dielektrischer Spalt 135
coil-on-chip 23	differential bi-phase code 220
Company Prefix 417	Differential-Code 220
Contact Pads 578	Digital-Analog-Konversion 535
contactless interface unit 475	Dimple 36
Container 398	DIN 713
Identifikation 398	Diode, Schottky-Diode 60
Coprozessor 29	Dipolantenne 38, 71, 137, 144, 151, 609
CRC 237, 342, 476	Dirac-Impuls 127
Crypto Suite 438	Dirac-Messung 127
Crypto Suite 438	Direktor 153
CSI 438	Discovery Sevices 413
Czochralski Verfahren 576	diskrete Fourier-Transformation 536
Czociiiaiski veriailieli 570	
D	Disktransponder 16
D DAC 525	DoD 416
DAC 535	Doppler-Effekt 484
Data Compactor 403	Dotieren 575

16 Register

Dotierungsprofil 38	elektronischer Datenträger 449
Drahtbonden 588	elektronischer Produktkode 413
Dreiecksknorpel 668	elektronischer Reisepass 331
Druckmessung 485	elektronische Wegfahrsperre 672
Drucktechnik 603	Elektrosmog-Verordnung 704
DSB 55	EMD 547, 556
DSB-Modulation 423	Empfängerempfindlichkeit 171
Dual-Interface-Card 29, 472, 635	Empfängerzweig 491
Dual-port-EEPROM 468	Empfangsleistung 147
Dual-Side-Band 55	Empfangsreichweite 307
Build Build 33	Empfangssignal 219
E	Empfangssignalaufbereitung 499
EAN 414	Empfangszweig 492
EAN-Code 2, 274	EMV-Spezifikation 638
EAS 14, 34, 204, 704	EN 16570 447
EAS-System 27	EN 16570 447 EN 16571 447
ECB 325	EN 300 220 209
ECTRA 200	EN 300 320 209 EN 300 330 195
EEPROM 690	EN 300 330 193 EN 300 440 209
Lebensdauer 479	EN 300 440 209 EN 300 674 210
Schreibzeit 481	EN 300 761 210
E-Feld Antenne 609	EN 301 091 210
effective aperture 147	EN 302 208 210
effective height 150	EN ISO/IEC 29160 447
Eindringtiefe 197, 616	end-of-burst detector 70
Eingangsimpedanz	Energiereichweite 53, 100, 299, 300, 494
Antenne 146	Energieversorgung 15, 450
Transponder 157	Entschlüsseln 317
Eingangskapazität 157	Entschlüsselung 476
Eingangsspannung, HF- 98	EPC 413, 416, 439
Eintor-Resonator 182	EPC Information Services 412
EIRP 145	EPC Memory 430
Eisenbahnverkehr 202	EPCglobal Inc 414
Electromagnetic Distortion 547, 556	EPCglobal Middleware 413
electronic code book 325	EPCglobal Network 412
elektrisches Feld 24, 65, 137	EPCglobal Specifications 415
elektrische Kompensation 532	EPCglobal Standards 416
elektrische Kopplung 24, 65	EPCIS 412
elektrische Länge 623	EPCUHFC1G2 442
elektrisches Wirbelfeld 88	EPCUHFGEN2V2 442
Elektrode 65	ERC 200
elektromagnetisches Feld 24	ERC Recommendation 70-03 200
elektromagnetisches Störfeld 30	ERO 200, 201, 210
elektromagnetische Verfahren 40	ERO 200, 201, 210 ERP 146
elektromagnetische Welle 139, 142, 508	Ersatzschaltbild 526
Entstehung 137	Schottky-Diode 158
	Denotary Diode 130

ESB 526	Ferrit 18
ETCS 661	Ferritantenne 133
Etikett 34	Ferrit-Folie 617
ETSI 199, 206, 208	Ferritfolie
Anschrift 713	gesintert 618
ETSI EN 300 220 208	Ferritschalenkern 18
ETSI EN 300 330 208	Ferritstab 135
ETSI EN 300 440 208	ferromagnetisches Metall 43
ETSI EN 302 208 207	field threshold 563
ETSI TR 102 436 210	File Kommando 439
EU-Mandat M/436 444	Filter Value 417
Eurobalise 203, 661	FIPS-197 321
European Radio Office 201	Flächenwiderstand 585
Evaluierung 537	Flexodruck 603
ExpressPay 641	Flip Chip 591, 592
Extended Bit Vector 437	Floating-Gate 479
ExxonMobil 641	FM0 Modulation 425
	FRAM 480
F	Schreibzeit 481
Fahrsmart 633	Frame Delay Time 306, 543
Fahrzeugidentifikation 203	Freight containers ID 708
FCC Part 15 214	Freiraumdämpfung 58, 139
FCC-Vorschrift 215	frequency shift keying 225
FDMA 251, 254	Frequenz 219
FDT 306, 543, 554	anharmonische 45
FDX 13, 45	harmonische 37, 45
FDX-B Transponder 340	Sende- 15
Fehlalarmquote 400	subharmonische 40, 45
Feld	Frequenzauswahl 195
elektrisch 65	Frequenzband 201
magnetisch 78	Frequenzbereich 187, 189
Feldeinwirkung 276	13,56 MHz 191
Feldgeneratorspule 733	135 kHz 189
Anpassschaltung 734	2,45 GHz 142, 194
Feldlinie 79	24,125 GHz 195
magnetische 102	27,125 MHz 191
Feldstärke 168, 533	40,680 MHz 192
die zur Zerstörung des Transponders	433,920 MHz 192
führt 564	5,8 GHz 194
magnetische 78	6,78 MHz 191
Maximum 81	865,0 MHz 193
Verlauf der 80	868 MHz 193
Feldwellenwiderstand 140	915 MHz 142, 194
FELICA 642	ISM 189
Fernfeld 138, 195, 606, 610	Frequenzmodulation 222

16 Register

Frequenzmultiplexverfahren 251, 254 Frequenzplanung 199	Gütefaktor 93, 114, 119, 121, 182, 512 Messung 126
FSK 45, 222	6
FSK-Modulation 492	Н
Full-Blocker 311	Haftfestigkeit 604
Füllbytes 324	Halbduplexverfahren 13, 45
Function-Cluster 466	Halbleiterschaltung 39
Funkanlage 187	Halbwellendipol 151
Funkdienst 187	Halsbandtransponder 666
Funkfrequenzspektrum	Handelspartner 412
Nutzung 199	Händlerbank 639
	Harmonische 37, 294
G	harmonische Frequenz 45
GaAs 574	Hartetikette 34, 39
Gallium-Arsenid 574	hartmagnetisches Metall 43
geätzte Antenne 587	Hashfunktion 318
gedruckte Antenne 587	kryptografisch 318
Gegeninduktion 89	Hauptstrahlrichtung 145, 153
Gegeninduktivität 84, 85, 105	HCI 521
gegenseitige Authentifizierung 329, 460	HDLC Protokoll 521
geinkt 579	HDX 13, 45
gemapt 579	Header 417
Gen 2 Protokoll 414, 422	Helmholtz-Anordnung 533, 545
Gen 2 V1.2.0 442	Herzschrittmacher 704
Gen 2 V2.0.0 442	H-Feld 209
Generation 2 414	H-Feld Antenne 609
Generatorspule 35	HF-Interface 293, 306, 450, 490
gepulste Systeme 46	High-end-System 29
gerichtete (Strahlungs-)Keule 31	High-end-Transponder 450
geschlossenes System 273	Hilbert-Algorithmus 536, 542
GIAI 419	Hilfsträger 51, 64, 227, 451, 492
GID 416	Hilfsträgerfrequenz 55, 227
Glastransponder 16, 135	307,2 kHz 64
Herstellen 595	Hologramm 604
Glaukom 694	Host-Controle-Interface 521
Global ID-Magazine 702	Humanmedizin 694
Golden Device 532	Hybridkarte 635
GRAI 416	Hysteresekurve 40, 132
Graphitbeschichtung 67	_
Grötrupp Helmut 625	l
Gruppenantenne 155	ICARE 636
GS1 422	Identifikation von Tieren 335, 336
GSM 206	Identifikationscode für Tiere 335
GTAG Initiative 412	Identifikationssystem 687
Güte 614	IIC-Bus 467
Antennengüte 615	Impedanzanalysator 123
Messung 128	Impedanzanpassung 158, 166

Impedanzfunktion 614	ISO/IEC 18000-63 422, 442
Induktionsgesetz 88	ISO/IEC 18001 407
Induktionsspannung 88	ISO/IEC 18046 409, 559
induktive Funkanlage 24, 204	ISO/IEC 18047 409
induktives Koppelelement 63	ISO/IEC 18092 642
induktive Kopplung 24, 77, 138, 195	ISO/IEC 19823 409
Induktivität 84, 612	ISO/IEC 21481 642
Gegeninduktion 89	ISO/IEC 24710 407
Gegeninduktivität 84	ISO/IEC 29160 447
Industrieautomation 29	ISO/IEC 29167 407, 438
Informationsquelle 219	ISO/IEC 7810 599
Infrarot 73	ISO/IEC 8824-1 404
Injektionsnadel 666	ISO/IEC 9798-2 329
injizierbarer Transponder 665	ISO/IEC 9834-1 404
ink dot 579	ISO-Container 398
Inletfolie 599	isotrop leitfähiger Klebstoff 592
integrierter Schaltkreis 576	isotroper Strahler 140, 144
Integrität 316	Issuer 639
Interdigitalwandler 71, 175	Item Management 402, 709, 710
Intermodulationsprodukt 301	Item Reference 417
Internationale Fernmeldeunion 198	ITU 198
ISM-Frequenzbereiche 187	ITU-R 199
ISO 713	
ISO 10536 62	J
ISO 10536 62 ISO 6346 398	J Java-Applets 517
ISO 6346 398	
ISO 6346 398 ISO 69871 398	Java-Applets 517
ISO 6346 398 ISO 69871 398 ISO 69872 398	Java-Applets 517
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398	Java-Applets 517 K Kalibrierspule 533
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526	Java-Applets 517 K Kalibrierspule 533 Kanalcodierung 229
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526 ISO/IEC 10374 398	Java-Applets 517 K Kalibrierspule 533 Kanalcodierung 229 Kanalraster 201
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526 ISO/IEC 10374 398 ISO/IEC 10536 344, 626	Java-Applets 517 K Kalibrierspule 533 Kanalcodierung 229 Kanalraster 201 Kapazitätsdiode 38
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526 ISO/IEC 10374 398 ISO/IEC 10536 344, 626 ISO/IEC 11784	Java-Applets 517 K Kalibrierspule 533 Kanalcodierung 229 Kanalraster 201 Kapazitätsdiode 38 kapazitives Koppelelement 63
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526 ISO/IEC 10374 398 ISO/IEC 10536 344, 626 ISO/IEC 11784 Identifikationscode 339	Java-Applets 517 K Kalibrierspule 533 Kanalcodierung 229 Kanalraster 201 Kapazitätsdiode 38 kapazitives Koppelelement 63 kapazitive Kopplung 24, 62, 65
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526 ISO/IEC 10374 398 ISO/IEC 10536 344, 626 ISO/IEC 11784 Identifikationscode 339 ISO/IEC 14443 46, 53, 305, 348, 626, 638	Java-Applets 517 K Kalibrierspule 533 Kanalcodierung 229 Kanalraster 201 Kapazitätsdiode 38 kapazitives Koppelelement 63 kapazitive Kopplung 24, 62, 65 kapazitive Lastmodulation 117
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526 ISO/IEC 10374 398 ISO/IEC 10536 344, 626 ISO/IEC 11784 Identifikationscode 339 ISO/IEC 14443 46, 53, 305, 348, 626, 638 ISO/IEC 15693 626	Java-Applets 517 K Kalibrierspule 533 Kanalcodierung 229 Kanalraster 201 Kapazitätsdiode 38 kapazitives Koppelelement 63 kapazitive Kopplung 24, 62, 65 kapazitive Lastmodulation 117 Kennzeichnung von Produkten 274
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526 ISO/IEC 10374 398 ISO/IEC 10536 344, 626 ISO/IEC 11784 Identifikationscode 339 ISO/IEC 14443 46, 53, 305, 348, 626, 638 ISO/IEC 15693 626 ISO/IEC 15961 402	K Kalibrierspule 533 Kanalcodierung 229 Kanalraster 201 Kapazitätsdiode 38 kapazitives Koppelelement 63 kapazitive Kopplung 24, 62, 65 kapazitive Lastmodulation 117 Kennzeichnung von Produkten 274 KeyUpdate Kommando 438
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526 ISO/IEC 10374 398 ISO/IEC 10536 344, 626 ISO/IEC 11784	K Kalibrierspule 533 Kanalcodierung 229 Kanalraster 201 Kapazitätsdiode 38 kapazitives Koppelelement 63 kapazitive Kopplung 24, 62, 65 kapazitive Lastmodulation 117 Kennzeichnung von Produkten 274 KeyUpdate Kommando 438 Kfz-Diebstahl 672
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526 ISO/IEC 10374 398 ISO/IEC 10536 344, 626 ISO/IEC 11784	K Kalibrierspule 533 Kanalcodierung 229 Kanalraster 201 Kapazitätsdiode 38 kapazitives Koppelelement 63 kapazitive Kopplung 24, 62, 65 kapazitive Lastmodulation 117 Kennzeichnung von Produkten 274 KeyUpdate Kommando 438 Kfz-Diebstahl 672 Klarschriftleser 4
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526 ISO/IEC 10374 398 ISO/IEC 10536 344, 626 ISO/IEC 11784	K Kalibrierspule 533 Kanalcodierung 229 Kanalraster 201 Kapazitätsdiode 38 kapazitives Koppelelement 63 kapazitive Kopplung 24, 62, 65 kapazitive Lastmodulation 117 Kennzeichnung von Produkten 274 KeyUpdate Kommando 438 Kfz-Diebstahl 672 Klarschriftleser 4 Klartext 316
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526 ISO/IEC 10374 398 ISO/IEC 10536 344, 626 ISO/IEC 11784	K Kalibrierspule 533 Kanalcodierung 229 Kanalraster 201 Kapazitätsdiode 38 kapazitives Koppelelement 63 kapazitive Kopplung 24, 62, 65 kapazitive Lastmodulation 117 Kennzeichnung von Produkten 274 KeyUpdate Kommando 438 Kfz-Diebstahl 672 Klarschriftleser 4 Klartext 316 Klassenkonzept 550 Klebeetiketten 23 Klebstoff
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526 ISO/IEC 10374 398 ISO/IEC 10536 344, 626 ISO/IEC 11784	K Kalibrierspule 533 Kanalcodierung 229 Kanalraster 201 Kapazitätsdiode 38 kapazitives Koppelelement 63 kapazitive Kopplung 24, 62, 65 kapazitive Lastmodulation 117 Kennzeichnung von Produkten 274 KeyUpdate Kommando 438 Kfz-Diebstahl 672 Klarschriftleser 4 Klartext 316 Klassenkonzept 550 Klebeetiketten 23 Klebstoff anisotrop 592
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526 ISO/IEC 10374 398 ISO/IEC 10536 344, 626 ISO/IEC 11784	K Kalibrierspule 533 Kanalcodierung 229 Kanalraster 201 Kapazitätsdiode 38 kapazitives Koppelelement 63 kapazitive Kopplung 24, 62, 65 kapazitive Lastmodulation 117 Kennzeichnung von Produkten 274 KeyUpdate Kommando 438 Kfz-Diebstahl 672 Klarschriftleser 4 Klartext 316 Klassenkonzept 550 Klebeetiketten 23 Klebstoff anisotrop 592 isotrop leitfähig 592
ISO 6346 398 ISO 69871 398 ISO 69872 398 ISO 69873 18, 398 ISO/IEC 10373-6 526 ISO/IEC 10374 398 ISO/IEC 10536 344, 626 ISO/IEC 11784	K Kalibrierspule 533 Kanalcodierung 229 Kanalraster 201 Kapazitätsdiode 38 kapazitives Koppelelement 63 kapazitive Kopplung 24, 62, 65 kapazitive Lastmodulation 117 Kennzeichnung von Produkten 274 KeyUpdate Kommando 438 Kfz-Diebstahl 672 Klarschriftleser 4 Klartext 316 Klassenkonzept 550 Klebeetiketten 23 Klebstoff anisotrop 592

16 Register

Kollisionsintervall 259	Kurzstreckenfunkgerät 27
Kommando	Kurzwellenfrequenz 191
Access 437	
ACK 437	L
NAK 437	Label 23
Query 436	Ladekondensator 68
QueryAdjust 436	Lagerhaltung 693
QueryRep 437	Laminieren 600
Kommissionierung 693	Landing Plane 532
Kommunikationsprotokoll 516	Langasit 487
Kommunikationsreichweite 26, 53	Langwelle 189
Kommunikationssystem 219	Langyagi-Antenne 303
Konfigurationsregister 461	Lastmodulation 50, 64, 67, 76, 115, 338,
Konformität 408	499
Konformitätsnorm 409	aktiv 305
kontaktbehaftete Chipkarte 472	aktive 54
Kontaktierung 589	kapazitive 117
Kontaktierverfahren 587	ohmsche 117
kontaktlose Chipkarte 20, 24, 599	reelle 117
kontaktlose Uhr 20	Lastmodulationsreichweite 299
KONTIKI 701	Lastmodulator 51, 121, 450, 516
Koppeldämpfung 493	Lastwiderstand 50, 113, 157, 227
Koppelelement 11	Leadframe 589
induktiv 63	Leistungsanpassung 68
kapazitiv 63	Leistungsmessung 565
Kopplung	Leistungspegel 201
elektrisch 24, 65	Leiterschleife 103, 138
induktiv 24, 77, 138	Leiterschleifenantennen 104
kapazitiv 24, 62, 65	Leitfähigkeit
magnetisch 24	spezifisch 616
Kopplungsfaktor 86, 110	Leseentfernung 305
Kreditkarte 625	Lesegerät 11, 103, 219, 489
Kreditkartenfunktion 517	für Klarschrift 4
Kreditkartenorganisation 640	Lesereichweite 25, 65, 81, 99, 103
Kreisdämpfung 93	vergrößern 278, 298
Kristallgitter 174	Lichtgeschwindigkeit 137
Kryptografie 472	Lieferkette 412, 417
Koprozessor 472, 476	line code 220
kryptografische Hashfunktion 318	lineare Detektion 160
kryptografisches Protokoll 328	Lithiumniobat 71, 174
kryptografischer Schlüssel 329	Lithiumtantalat 71, 174
Krypto-Unit 456	Logistikprozess 413
kugelförmiger Strahler 140	Long-range-System 25, 58
Kunstlinse 694	low-barrier-Schottky 60
Kurzstreckenfunk 188	low-cost-Transponder 197

low-end-System 27	Metall
LPRA 702	amorphes 40, 43
LTE 206	hartmagnetisches 43
Luftspalt 61	Metalldeckel 135
•	Metallfolie 67
M	Metalloberfläche 18, 88, 134, 135, 677, 685
MAC 319	Rückstreuquerschnitt 143
MAD 466	MFRC-522 501
Administration-Code 467	micro-SD Karte 53
Application-Code 466	Middleware 517
Function-Cluster 466	MIFARE 474, 501, 642
Magnetfeld 137	MIFARE-Transponder 465
magnetische Erregung 533	Mikrochip 11, 39, 90
magnetisches Feld 24, 78, 137	Betriebsspannung 95
magnetische Feldlinie 102	Spannungsversorgung 90
magnetische Feldstärke 78	Stromaufnahme 113
magnetischer Fluss 83	Mikroprozessor 471
magnetische Kopplung 24	Betriebssystem 471
magnetisches Wechselfeld 79	Chipkarte 8, 474
Magnetisierungskennlinie 132	Mikrospule 694
Magnetostriktion 43	Mikrostrip-Antenne 153
Manchester-Code 220, 263	Mikrowelle 25, 37
Manipulation 329	Mikrowellenfrequenz 58
maschinenlesbare Zeile 331	Mikrowellensystem 492
Massenfertigung 686	Miller-Code 220
MasterCard 641	modified 220
Masterschlüssel 330	Millersubcarrier 426
Master-Slave-Prinzip 489	Minimale Lese- oder Schreibfeldstärke 563
Materialfluss 687	Mitgliedstaaten 200
Matrix Run 619	MixColumn 323
Mauterfassung 203	Mobile Oil 641
Maximale Feldstärke 564	Mobiltelefon 472
maximum operating electromagnetic	Modem 219
field 564	modified miller code 220
Megabump 593	modulated backscatter 61, 169
mehrstufige Modulation 227	Modulation 172, 219, 222, 554
Messung	2-FSK 71
Beschleunigung 483, 485	ASK 492
Druck 485	DSB 55, 423
Durchfluss 483	FM0 425
Entfernung 484	FSK 492
Feuchte 483	PR-ASK 423
Gase 483	PSK 492
Geschwindigkeit 484	SSB-ASK 423
Licht 483	Zweiseitenband 55
PH-Wert 483	Modulationseigenschaften 533, 536, 541
physikalische Größen 485	Modulationseingang 497
Temperatur 485	Modulationskondensator 118

16 Register

Modulationsparameter 542	Offsetdruck 603
Modulationsprodukt 223	OFW 71
Modulationsseitenband 297	Ohrmarke 666
Modulationswiderstand 116, 452	on-chip trimm capacitor 68
Modulator 219	On-chip-Oszillator 499
modulierter Rückstrahlquerschnitt 142, 169	one-time-pad 326
Montageuntergrund 568	On-Off keying 223
Motorelektronik 674	ONS 412
multi-access 250	Operated Range Test 560
Multiplexer 657	Operated Volume Test 560
Mutual Authentication 329	Operating Volume 532, 536 ÖPNV 29, 701
N	Orientierungstest 563
Nahfeld 50, 138, 195, 309, 606, 610	Oszillator 171, 491
NAK Kommando 437	on-chip 499
nationale Regulierungsvorschrift 210	OTA-Dienst 644
Near Field Communication 642	Overlayfolie 599
Netzwerkanalysator 123	•
Newsletter	P
ID Tech Ex 703	Padding 324
NF-Bereich 40	Parabolspiegel 304
NFC 73, 516, 642	Parallelregler 97
active-mode 642	Parallelresonanz 614
passive-mode 642	Parallelresonanzkreis 91
NFC-Device 642	Parallelschwingkreis 90
NFC-Initiator 74	Paritätsbit 235
NFC-Target 74	Paritätsprüfung 235
NFC Wired Interface 522	Partitition 417
NFC-WI Interface 306	Passierungsschicht 578
nichtlinearer Widerstand 37	passive Lastmodulation 54
Normen, Bezugsquelle 713	passiver Transponder 15, 25, 47, 95, 450
NRZ-Code 64, 220, 263	Passwort 460
NTC 482	Patch-Antenne 153
Nullkopplung 552	PayPass 641
Nummer, Serien 673	PCD 532
	PCD Antenne 532
0	PCD Standard Frame 365
Oberflächenwelle 71, 174	Performanz 408
Oberflächenwellen-Bauelement 71	Performanznorm 409
Oberflächenwellen-Transponder 25, 495	Permanentmagnet 41
Oberwelle	Permeabilität 132, 618
Abhören 293	Permeabilitätskonstante 533
Object Naming Service 412	Personen(nah)verkehr 626
OCR-System 5	PGP 320
OEM-Lesegerät 513	Phase 219
Öffentlicher Personen(nah)verkehr 626	Phase Shift Keying 226

Phasenlage 485	PSK 45, 64, 222
Phasenmodulation 117, 222	PSK-Modulation 492
Phasenrauschen 171	Public-Key Verfahren 320
Phasenumtastung 226	puls pause coding 220
Photolithographie 578	Pulse Intervall Encoding 424
PICC 345	Pulsradar 496
PIE 424	Pulsweite 503
Piezoeffekt 174	
piezoelektrischer Effekt 71	Q
piezoelektrischer Kristall 174	quadratische Detektion 160
Planarantenne 153	Qualitätsmerkmale 390
Plastikgehäuse 17	Quarz 174
Plastikpackage (PP) 17	Query Kommando 436
Point-of-Sale 638	QueryAdjust Kommando 436
Polarisation 141	QueryRep Kommando 437
horizontal 141	
linear 141	R
vertikal 141	R&TTE-Directive 210, 714
zirkular 141, 155	R&TTE-Homepage 211
Polarisationsrichtung 168	R&TTE-Richtlinie 201, 208
Polarisationsverlust 141	radar cross section 143
Polling-Verfahren 256	Radar, Rückstreuquerschnitt 143
Polstelle 613	RADAR-Technik 60, 142
Polyethylen-Folie 34	Rahmenantenne 36
Polymer-Absorberfolie 618	railways 705
Polymer-Dickfilmpaste 585	Raummultiplexverfahren 251, 253
Population Analysis 570	Rauschen 171, 299
Populationstest 570	Rayleigh-Welle 174
POS 638	RCS 143
POS-Terminal 638	reader-emulation-mode 76
power management unit 474	Read-only-Transponder 27, 450, 458
power-down-mode 475	REC 70-03 200
Power-ON-Logik 456	Receiver 219
Poyntigscher Strahlungsvektor S 140	Reference PICC 531, 536
PR-ASK-Modulation 423	Referenzkarte 531, 536
Privatsphäre 274	reflective delay line 178
Schutz der 447	reflektive Verzögerungsleitung 178
Produktionsprozess 686	Reflektor 71, 153, 177
Produktkennzeichnung 274	Reflexion 168
Programmierstation 658	Reflexionseigenschaft 61, 142
Programmierung, Lesegerät 502	Reflexionsmessung 527
Protokollrahmen 501	Register 502
Proximity-coupling 626	Regulierung 199
Proximity-Effekt 617	Regulierungsvorschrift 200
Pseudozufallsfolge 327	Bezugsquellen 713

16 Register

Reichweite 25, 30, 59, 65, 81, 103, 178,	Schlüsselanhänger 641
197, 253, 298	Schlüsselpaar 320
Abhörreichweite 297	Schlüsselspeicher 461
Reichweitengrenze 139	Schottky-Detektor 158, 168
Relay-Attack	Schottky-Diode 60, 158
abwehren 331	Sperrschichtkapazität 158
Remote-coupling-System 24	Sperrschichtwiderstand 158
REQUEST-Kommando 256, 261	Schreibzeit 481
Reserved Memory 430	Schweißen 593
Resonanzfrequenz 90, 107, 108, 123, 529,	Schwingkreisspule 39
614	Scutulum 668
Messung 128	SDMA 251, 253
Resonanzschwingung 34	Secure Element 518, 522, 644
Resonator 182	SecureComm Kommando 438
RFID-Sign 444	Secure-Memory-Card 518
RFID-System 1, 11, 29	segmentierte Transponder 403, 463
RFID-Transponder 11	Seitenband 172, 223
RF-Verfahren 34	Seitenbandamplitude 536, 545
Richtantenne 153, 297	Selbstinduktion 89
Richtkoppler 61, 493	SELECT-Kommando 261
Rijndael-Algorithmus 321	semi-passiver Transponder 26
Ringmodulator 55	Sendefrequenz 15, 108
road toll systems 203	Sendeleistung erhöhen 300
Roboter 693	Senderzweig 491
Rollentest 605	sensitivity degradation 563
RSA 477	Sensordaten 482
RTI 704	Sensorspule 35
RTTT 195	Seoul 631
Rückstrahlquerschnitt 60, 142	SEQ 67
moduliert 169	sequentielle Chiffre 317
Rückstreuquerschnitt 143, 147, 168	sequentieller Transponder 14
_	sequentielle Verfahren 14, 67
S	Seriennummer 27, 261, 265, 311, 458, 477,
S2C-Interface 522	673
Sägen des Wafer 580	Serienresonanz 614
SAM 331	Serienresonanzkreis 103, 508
SAW 71	Session Flag 431
scatter aperture 143, 147	SGLN 416
Schieberegister 240	SGTIN 416, 417
Schleifenantenne 209, 609	SHA-1 332
Schleifendipol 151	Shear Test 604
Schlüssel 317	ShiftRow 323
applikationseigener 463	Short Frame 364
applikationsspezifischer 463	Short Range Device 27, 188, 200, 202
geheimer 460	Regulierung 200
hierarchischer 462	Shuntregler 96, 97, 121
Masterschlüssel 330	Shuntwiderstand 95

Sicherheitsanforderung 31	Speichersegmentierung, variabel 465
Chipkarte 473	Spektrumanalysator 564
Sicherheitslogik 456	spezifische Leitfähigkeit 616
Sicherheitssystem 315	Spitzenwertgleichrichtung 160
Sicherung	split-phase encoding 220
siehe Artikelsicherung	spread-spectrum 251
Sicherungsetikett 34	Sprühventil 608
Sicherungsmittel 34	Spulentreiber 499
Siebdruck 22, 603	SRAM 690
Siebdrucktechnik 585	SRD 27, 188, 200, 704, 705, 707
SIGIN 522	SSB-ASK-Modulation 423
sigma-modulation 169	SSCC 416
Signaldarstellung 219	Standard Frame 365, 369
Signaldecodierung 219	Start-up time 543
Signalkodierung 219, 498	State-Machine 29, 450, 457, 474
Signallaufzeit 484	Steilkegelschaft 398, 684
Signalprocessing 219	Störreflexion 178
SIGOUT 522	Störsender 278, 297
Silberleitpaste 67	Strahlungsdiagramm 145
Silizium 574	Strahlungsdichte 140, 142
SIM-Karte 53, 518	Strahlungsleistung 140
Single Chip Reader IC 501	Strahlungswiderstand 146, 151, 154, 161
Single Wire Protokoll 520	streamcipher 317
Ski-Lift 655	Stromanpassung 69
Skin-Effekt 616	Stromaufnahme 113
Slot 261	Stromfestigkeit 622
Slotted-ALOHA 423	Stromsparmodus 475
Slotted-ALOHA-Verfahren 259, 311	Stromverschlüsselung 317
Smart Label 22, 25	Subcarrier
Smart Labels Analyst 703	siehe Hilfsträger
Softwareanwendung 489	Subharmonisch 40, 45
Solutions 703	Substitutionsmethode 531, 536, 538
Sonotrode 584	supply chain 412
Spannungsanpassung 69	survival electromagnetic field 564
Spannungsteiler, kapazitiv 65	symmetrische Algorithmen 320
Spannungsverdoppler 161	Synchronisation 520
Spannungsversorgung 90, 158	mehrere Lesegeräte 337
des Chips 26	Synchronisationsleitung 338
Shuntregler 97	Systembetreiber 273
Spanzeugidentifikation 398	Systemocretical 273
Speedpass 641	т
Speicher, segmentiert 463	T/R 22-04 209
Speicherbereich 277	T/R 60-01 209
Speicherblock 342	Takt 457
Speicherkapazität 32	tamper-proof 604
Speicherkarte 8	Tari 425
spercherkarte o	1 a11 423

16 Register

Tartan-Matte 682	U
Tastgrad 172, 223	U2270B 498
Taubenring 670	Überlagerung 167
TDMA 251, 255	Übertragungsfehler 219
Telemetriesender 27, 208, 482	Übertragungskanal 219
Temperaturmessung 485	Übertragungsmedium 219
Temperatursensor 182, 482, 483	Übertragungsprotokoll
Thermokompressionsbonden 592	ISO 14223 341
Thermosonic Bonden 588	UCC 414
Three Pass Mutual Authentication 329	UHF-Bereich 25
Threshold Level 559, 606	UHF-Frequenzbereich 58, 192, 193
threshold level 563, 567	UID 364
Ticketing 29	UII 439
TID Memory 430	UII Memory 430
Tiegelziehverfahren 576	Ultraschallbonden 588
Tieridentifikation 29, 335, 336	Unikatsnummern 477
touch & go 61	Unipolar-Code 220
Touch & Travel 645	unique number 28, 673
Touchpoint 645	Universal-Blocker 311
Trafic Telematics 195	Untraceable Kommando 439
Träger 219, 222	UPC 2, 274
Trägerperiode 543	US Bonden 588
Trägerschwingung 223	User memory 430
Transaktionszeit 472	UV-Flexodruck 603
transformatorische Kopplung 48, 50, 138	
transformierte Impedanz 50	V
transformierte Transponderimpedanz 105,	VDA 5520 445
108, 115	VDE 713
Transmitter 219	VDI 713
Transponder 11, 219, 526	VDI 4470 34, 400
1-bit 34	Verbraucherschutzorganisation 274
aktiver 15, 25, 305	Verkehrsangebot 257
Disk~ 16	Verkehrstelematik 203
Glas~ 16	Verkürzungsfaktor 152
passiver 15, 25, 47, 95, 450	Verlegetechnik 584
semi-passiver 26	Vernam Chiffre 326
zerstören 275	Verschlüsseln 317
Transponderantenne 168	verschlüsselte Datenübertragung 317
Transponderimpedanz, transformierte 105	Verschlüsselung 31, 476
Transponderklon 277	Verschlüsselungsfunktion 327
Transponderresonanzfrequenz 123	Verstimmung 276
Transponderschwingkreis 115, 119, 124,	Vertraulichkeit 316
452 Transponderspula 506	Verwendungskontext 273 VHF-Bereich 192
Transponderspule 596 trimm capacitor, on-chip 68	
TS 102 613 520	Vicinity coupling 626 System 25
TS Bonden 588	Vielfachzugriff 250
15 Dollacii 500	vicinaciizugiiii 230

VISA 636	Υ
Visa Wave 641	Yagi-Uda-Antenne 153
Vollduplexverfahren 13, 45	
VSWR Brücke 565	Z
	Zahlungsverkehr 472
W	Zahlungsverkehrssystem 638
Wafer 577	Zeitmultiplexverfahren 251, 255
Bumpen 590	Zeitschlitz 261
Sägen 580	Zeitzeichensender 189
sawn on foil 581	Zerstörung
Wafer Prober 579	durch Feldeinwirkung 276
Wareneingang 413	eines Transponders 275
Warensicherungssysteme	zirkulare Polarisation 141, 155
Kundenabnahmerichtlinie 713	ZKA 636
Wegfahrsperre 17, 497	Zufallszahl 329, 671
Wellenlänge 138	Zugriffsrechte 461
Welttelegraphenverein 198	Zündschloss 673
Werkzeugidentifikation 398	Zustandsautomat 14, 450
Werkzeugmagazin 684	Zustandsdiagramm 458
Wickelmaschine 596	Zutrittsberechtigung 657
Wickeltechnik	Zutrittskontrolle 29, 660
mit Kern 582	Zweifrequenzumtastung 225
mit Luftspule 582	Zweiseitenband-Modulation 55
Wicklungswiderstand 89	
Widerstand, nichtlinear 37	
Windungsabstand 622	
Windungskapazität 622	
Wirbelfeld 137	
Wirbelstrom 88	
Wirbelstromverlust 135	
wirksame Fläche 147, 150	
wirksame Höhe 150	
wirksame Länge 150	
Wirkwiderstand 612	
Wobbelsignal 36	
WUPA 364	