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Fundamental Properties of Superconductors

The vanishing of the electrical resistance, the observation of ideal diamagnetism,
or the appearance of quantized magnetic flux lines represent characteristic prop-
erties of superconductors that we will discuss in detail in this chapter. We will see
that all of these properties can be understood, if we associate the superconducting
state with a macroscopic coherent matter wave. In this chapter, we will also learn
about experiments convincingly demonstrating this wave property. First we turn
to the feature providing the name “superconductivity.”

1.1
The Vanishing of the Electrical Resistance

The initial observation of the superconductivity of mercury raised a fundamen-
tal question about the magnitude of the decrease in resistance on entering the
superconducting state. Is it correct to talk about the vanishing of the electrical
resistance?
During the first investigations of superconductivity, a standardmethod formea-

suring electrical resistance was used. The electrical voltage across a sample car-
rying an electric current was measured. Here, one could only determine that the
resistance dropped bymore than a factor of a thousandwhen the superconducting
state was entered. One could only talk about the vanishing of the resistance in that
the resistance fell below the sensitivity limit of the equipment and, hence, could no
longer be detected. Here, wemust realize that in principle it is impossible to prove
experimentally that the resistance has exactly zero value. Instead, experimentally,
we can only find an upper limit of the resistance of a superconductor.
Of course, to understand such a phenomenon, it is highly important to test with

the most sensitive methods to see whether a finite residual resistance can also be
found in the superconducting state. Sowe are dealingwith the problem ofmeasur-
ing extremely small values of the resistance. Already in 1914 Kamerlingh-Onnes
used by far the best technique for this purpose.He detected the decay of an electric
current flowing in a closed superconducting ring. If an electrical resistance exists,
the stored energy of such a current is transformed gradually into joule heat. Hence,
we need to only monitor such a current. If it decays as a function of time, we can
be certain that a resistance still exists. If such a decay is observed, one can deduce
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Figure 1.1 The generation of a permanent current in a superconducting ring.

an upper limit of the resistance from the temporal change and from the geometry
of the superconducting circuit.
This method is more sensitive by many orders of magnitude than the usual

current–voltage measurement. It is shown schematically in Figure 1.1. A ring
made from a superconducting material, say, from lead, is held in the normal state
above the transition temperature Tc. A magnetic rod serves for applying a mag-
netic field penetrating the ring opening. Nowwe cool the ring below the transition
temperature Tc at which it becomes superconducting. The magnetic field1) pene-
trating the opening practically remains unchanged. Subsequently we remove the
magnet. This induces an electric current in the superconducting ring, since each
change of the magnetic flux Φ through the ring causes an electrical voltage along
the ring. This induced voltage then generates the current.
If the resistance had exactly zero value, this current would flow without any

change as a “permanent current” as long as the lead ring remained superconduct-
ing. However, if there exists a finite resistance R, the current would decrease with
time, following an exponential decay law. We have

I(t) = I0e−(R∕L)t (1.1)

Here, I0 denotes the current at some time that we take as time zero; I(t) is the cur-
rent at time t; R is the resistance; and L is the self-induction coefficient, depending
only upon the geometry of the ring.2)

1) Throughout we will use the quantity B to describe the magnetic field and, for simplicity, refer to
it as “magnetic field” instead of “magnetic flux density.” Since the magnetic fields of interest (also
those within the superconductor) are generated by macroscopic currents only, we do not have to
distinguish between the magnetic fieldH and the magnetic flux density B, except for a few cases.

2) The self-induction coefficient L can be
defined as the proportionality factor between
the induction voltage along a conductor and
the temporal change of the current passing
through the conductor: Uind = −L(dI∕dt).
The energy stored within a ring carrying a
permanent current is given by (1/2)LI2. The

temporal change of this energy is exactly
equal to the joule heating power RI2
dissipated within the resistance. Hence, we
have −(d∕dt)((1∕2)LI2) = RI2. One obtains
the differential equation −(dI∕dt) = (R∕L)I,
the solution of which is Eq. (1.1).
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For an estimate, we assume that we are dealing with a ring of 5 cm diameter
made fromawirewith a thickness of 1mm.The self-induction coefficientL of such
a ring is about 1.3× 10−7 H. If the permanent current in such a ring decreases by
less than 1% within an hour, we can conclude that the resistance must be smaller
than 4× 10−13 Ω.3) This means that in the superconducting state the resistance has
changed by more than 8 orders of magnitude.
During such experiments the magnitude of the permanent current must be

monitored. Initially [1] this was simply accomplished by means of a magnetic
needle, its deflection in the magnetic field of the permanent current being
observed. A more sensitive setup was used by Kamerlingh-Onnes and somewhat
later by Tuyn [2]. It is shown schematically in Figure 1.2. In both superconducting
rings 1 and 2, a permanent current is generated by an induction process. Because
of this current both rings are kept in a parallel position. If one of the rings (here
the inner one) is suspended from a torsion thread and is slightly turned away
from the parallel position, the torsion thread experiences a force originating
from the permanent current. As a result, an equilibrium position is established
in which the angular moments of the permanent current and of the torsion
thread balance each other. This equilibrium position can be observed very
sensitively using a light beam. Any decay of the permanent current within the
rings would be indicated by the light beam as a change in its equilibrium position.
During all such experiments, no change of the permanent current has ever been
observed.
A nice demonstration of superconducting permanent currents is shown in

Figure 1.3. A small permanent magnet that is lowered toward a superconducting
lead bowl generates induction currents according to Lenz’s rule, leading to
a repulsive force acting on the magnet. The induction currents support the
magnet at an equilibrium height. This arrangement is referred to as a levitated
magnet. The magnet is supported as long as the permanent currents are flowing
within the lead bowl, that is, as long as the lead remains superconducting.
For high-temperature superconductors such as YBa2Cu3O7, the levitation can
easily be performed using liquid nitrogen in regular air. Furthermore, it can also
serve for levitating freely real heavyweights such as the Sumo wrestler shown in
Figure 1.4.
The most sensitive arrangements for determining an upper limit of the resis-

tance in the superconducting state are based on geometries having an extremely
small self-induction coefficient L, in addition to an increase in the observation
time. In this way, the upper limit can be lowered further. A further increase in the
sensitivity is accomplished by themodern superconductingmagnetic field sensors
(see Section 7.6.4). Today, we know that the jump in resistance during entry into
the superconducting state amounts to at least 14 orders of magnitude [3]. Hence,
in the superconducting state, a metal can have a specific electrical resistance that

3) For a circular ring of radius r made from a wire of thickness 2d also with circular cross-section
(r ≫ d), we have L=𝜇0r [ln(8r/d)− 1.75] with 𝜇0 = 4𝜋 × 10−7 V s/Am. It follows that

R ≤ − ln 0.99 × 1.3 × 10−7

3.6 × 103
Vs
Am

≅ 3.6 × 10−13 Ω
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Figure 1.2 Arrangement for the observation of a permanent current. (a) side view, (b) top
view. (After [2].) Ring 1 is attached to the cryostat.

(a) (b)

Figure 1.3 The “levitated magnet” for demonstrating the permanent currents that are gen-
erated in superconducting lead by induction during the lowering of the magnet. (a) Starting
position. (b) Equilibrium position.
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Figure 1.4 Application of free levitation
by means of the permanent currents in a
superconductor. The Sumo wrestler (includ-
ing the plate at the bottom) weighs 202 kg.

The superconductor is YBa2Cu3O7. (Photo-
graph kindly supplied by the International
Superconductivity Research Center (ISTEC)
and Nihon-SUMO Kyokai, Japan, 1997.)

is at most about 17 orders of magnitude smaller than the specific resistance of
copper, one of our best metallic conductors, at 300K. Since hardly anyone has a
clear idea about “17 orders of magnitude,” we also present another comparison:
the difference in resistance of a metal between the superconducting and normal
states is at least as large as that between copper and a standard electrical insulator.
Following this discussion, it appears justified at first to assume that in the

superconducting state the electrical resistance actually vanishes. However, we
must point out that this statement is valid only under specific conditions. So
the resistance can become finite even in the case of small transport currents, if
magnetic flux lines exist within the superconductor. Furthermore, alternating
currents experience a resistance that is different from zero. We return to this
subject in more detail in subsequent chapters.
This totally unexpected behavior of the electric current, flowing without resis-

tance through a metal and at the time contradicting all well-supported concepts,
becomes evenmore surprising if we lookmore closely at charge transport through
ametal. In this way, we can also appreciatemore strongly the problem confronting
us in terms of an understanding of superconductivity.
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We know that electric charge transport in metals takes place through the elec-
trons. The concept that, in a metal, a definite number of electrons per atom (for
instance, in the alkalis, one electron, the valence electron) exist freely, rather like
a gas, was developed at an early time (by Paul Drude in 1900, and Hendrik Anton
Lorentz in 1905). These “free” electrons also mediate the binding of the atoms
in metallic crystals. In an applied electric field the free electrons are accelerated.
After a specific time, the mean collision time 𝜏 , they collide with atoms and
lose the energy they have taken up from the electric field. Subsequently, they
are accelerated again. The existence of the free charge carriers, interacting with
the lattice of the metallic crystal, results in the high electrical conductivity of
metals.
Also the increase in the resistance (decrease in the conductivity) with increas-

ing temperature can be understood immediately. With increasing temperature,
the uncorrelated thermal motion of the atoms in a metal (each atom is vibrat-
ing with a characteristic amplitude about its equilibrium position) becomes more
pronounced. Hence, the probability for collisions between the electrons and the
atoms increases, that is, the time 𝜏 between two collisions becomes smaller. Since
the conductivity is directly proportional to this time, in which the electrons are
freely accelerated because of the electric field, it decreases with increasing tem-
perature and the resistance increases.
This “free-electron model,” according to which electron energy can be deliv-

ered to the crystal lattice only due to the collisions with the atomic ions, provides
a plausible understanding of electrical resistance. However, within this model, it
appears totally inconceivable that, within a very small temperature interval at a
finite temperature, these collisions with the atomic ions should abruptly become
forbidden. Which mechanism(s) could have the effect that, in the superconduct-
ing state, energy exchange between electrons and lattice is not allowed any more?
This appears to be an extremely difficult question.
Based on the classical theory of matter, another difficulty appeared with the

concept of the free-electron gas in a metal. According to the general rules of
classical statistical thermodynamics, each degree of freedom4) of a system on
average should contribute kBT/2 to the internal energy of the system. Here,
kB = 1.38× 10−23 W s/K is Boltzmann’s constant. This also means that the free
electrons are expected to contribute the amount of energy 3kBT/2 per free elec-
tron, characteristic for a monatomic gas. However, specific heat measurements
of metals have shown that the contribution of the electrons to the total energy of
metals is about a thousand times smaller than expected from the classical laws.
Here, one can see clearly that the classical treatment of the electrons in met-

als in terms of a gas of free electrons does not yield a satisfactory understand-
ing. On the other hand, the discovery of energy quantization by Max Planck in
1900 started a totally new understanding of physical processes, particularly on the

4) Each coordinate of a system that appears quadratically in the total energy represents a thermo-
dynamic degree of freedom, for example, the velocity v for Ekin = (1/2)mv2, or the displacement x
from the equilibrium position for a linear law for the force, Epot = (1/2)Dx2, where D is the force
constant.
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atomic scale. The following decades then demonstrated the overall importance of
quantum theory and of the new concepts resulting from the discovery made by
Max Planck. Also the discrepancy between the observed contribution of the free
electrons to the internal energy of a metal and the amount expected from the clas-
sical theory was resolved by Arnold Sommerfeld in 1928 bymeans of the quantum
theory.
The quantum theory is based on the fundamental idea that each physical system

is described in terms of discrete states. A change of physical quantities such as the
energy can only take place by a transition of the system from one state to another.
This restriction to discrete states becomes particularly clear for atomic objects. In
1913, Niels Bohr proposed the first stable model of an atom, which could explain
a large number of facts hitherto not understood. Bohr postulated the existence of
discrete stable states of atoms. If an atom in some way interacts with its environ-
ment, say, by the gain or loss of energy (e.g., due to the absorption or emission of
light), then this is possible only within discrete steps in which the atom changes
from one discrete state to another. If the amount of energy (or that of another
quantity to be exchanged) required for such a transition is not available, the state
remains stable.
In the final analysis, this relative stability of quantum mechanical states also

yields the key to the understanding of superconductivity. Aswe have seen, we need
somemechanism(s) forbidding the interaction between the electrons carrying the
current in a superconductor and the crystal lattice. If one assumes that the “su-
perconducting” electrons occupy a quantum state, some stability of this state can
be understood. Already in about 1930, the concept became accepted that super-
conductivity represents a typical quantum phenomenon. However, there was still
a long way to go for a complete understanding. One difficulty originated from
the fact that quantum phenomena were expected for atomic systems, but not for
macroscopic objects. In order to characterize this peculiarity of superconductiv-
ity, one often referred to it as a macroscopic quantum phenomenon. Below we will
understand this notation even better.
Inmodern physics another aspect has also been developed, whichmust bemen-

tioned at this stage, since it is needed for a satisfactory understanding of some
superconducting phenomena. We have learned that the particle picture and the
wave picture represent complementary descriptions of one and the same physical
object. Here, one can use the simple rule that propagation processes are suitably
described in terms of the wave picture and exchange processes during the inter-
action with other systems in terms of the particle picture.
We illustrate this important point with two examples. Light appears to us as

a wave because of many diffraction and interference effects. On the other hand,
during the interaction with matter, say, in the photoelectric effect (knocking an
electron out of a crystal surface), we clearly notice the particle aspect. One finds
that independently of the light intensity the energy transferred to the electron only
depends upon the light frequency. However, the latter is expected if light repre-
sents a current of particles where all particles have an energy depending on the
frequency.



18 1 Fundamental Properties of Superconductors

For electrons, we are more used to the particle picture. Electrons can be
deflected by means of electric and magnetic fields, and they can be thermally
evaporated from metals (glowing cathode). All these are processes where the
electrons are described in terms of particles. However, Louis de Broglie proposed
the hypothesis that each moving particle also represents a wave, where the
wavelength 𝜆 is equal to Planck’s constant h divided by the magnitude p of the
particle momentum, that is, 𝜆= h/p. The square of the wave amplitude at the
location (x, y, z) then is a measure of the probability of finding the particle at this
location.
We see that the particle is spatially “smeared” over some distance. If we want to

favor a specific location of the particle within the wave picture, we must construct
a wave with a pronounced maximum amplitude at this location. Such a wave is
referred to as a wave packet. The velocity with which the wave packet spatially
propagates is equal to the particle velocity.
Subsequently, this hypothesis was brilliantly confirmed. With electrons we can

observe diffraction and interference effects. Similar effects also exist for other par-
ticles, say, for neutrons. The diffraction of electrons and neutrons has developed
into important techniques for structural analysis. In an electron microscope, we
generate images bymeans of electron beams and achieve a spatial resolutionmuch
higher than that for visible light because of the much smaller wavelength of the
electrons.
For the matter wave associated with the moving particle, there exists, like

for each wave process, a characteristic differential equation, the fundamental
Schrödinger equation. This deeper insight into the physics of electrons must also
be applied to the description of the electrons in a metal. The electrons within
a metal also represent waves. Using a few simplifying assumptions, from the
Schrödinger equation we can calculate the discrete quantum states of these elec-
tron waves in terms of a relation between the allowed energies E and the so-called
wave vector k. The magnitude of k is given by 2π/𝜆, and the spatial direction of
k is the propagation direction of the wave. For a completely free electron, this
relation is very simple. We have in this case

E = ℏ2𝐤2
2m

(1.2)

where m is the electron mass and ℏ = h∕2π.
However, within a metal the electrons are not completely free. First, they are

confined to the volume of the piece of metal, like in a box. Therefore, the allowed
values of k are discrete, simply because the allowed electron waves must satisfy
specific boundary conditions at the walls of the box. For example, the amplitude
of the electron wave may have to vanish at the boundary.
Second, within the metal the electrons experience the electrostatic forces orig-

inating from the positively charged atomic ions, in general arranged periodically.
This means that the electrons exist within a periodic potential. Near the positively
charged atomic ions, the potential energy of the electrons is lower than between
these ions. As a result of this periodic potential, in the relation between E and k,
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Figure 1.5 Energy–momentum relation for an electron in a periodic potential. The relation
(Eq. (1.2)) valid for free electrons is shown as the dashed parabolic line.

not all energies are allowed any more. Instead, there exist different energy ranges
separated from each other by ranges with forbidden energies. An example of such
an E–k dependence, modified because of a periodic potential, is shown schemat-
ically in Figure 1.5.
So nowwe are dealing with energy bands.The electronsmust be filled into these

bands. Here, we have to pay attention to another important principle formulated
byWolfgang Pauli in 1924.This “Pauli principle” requires that in quantum physics
each discrete state can be occupied only by a single electron (or more generally by
a single particle with a half-integer spin, a so-called “fermion”). Since the angular
momentum (spin) of the electrons represents another quantum number with two
possible values, according to the Pauli principle each of the discrete k-values can
be occupied by only two electrons. In order to accommodate all the electrons of
a metal, the states must be filled up to relatively high energies. The maximum
energy up to which the states are being filled is referred to as the Fermi energy
EF. The density of states per energy interval and per unit volume is referred to
simply as the density of states N(E). In the simplest case, in momentum space the
filled states represent a sphere, the so-called Fermi sphere. However, in general,
one finds more complex objects. In a metal the Fermi energy is located within an
allowed energy band, that is, the band is only partly filled.5) In Figure 1.5, the Fermi
energy is indicated for this case.
The occupation of the states is determined by the distribution function for a

system of fermions, the Fermi function. This Fermi function takes into account

5) We have an electrical insulator if the accommodation of all the electrons only leads to completely
filled bands. The electrons of a filled band cannot take up energy from the electric field, since no
free states are available.
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Figure 1.6 Fermi function. EF is a few electronvolts, whereas thermal smearing is only a
few 10−3 eV. To indicate this, the abscissa is interrupted.

the Pauli principle and is given by

f = 1
e(E−EF)∕kBT + 1

(1.3)

where kB is Boltzmann’s constant and EF is the Fermi energy. This Fermi func-
tion is shown in Figure 1.6 for the case T = 0 (dashed line) and for the case T > 0
(solid line). For finite temperatures, the Fermi function is slightly smeared out.
This smearing is equal to about the average thermal energy of the fermions. At
room temperature, it amounts to about 1∕40eV.6) At finite temperatures, the Fermi
energy is the energy at which the distribution function has the value 1/2. In a
typical metal, it amounts to about a few electronvolts.This has the important con-
sequence that at normal temperatures the smearing of the Fermi edge is very small.
Such an electron system is referred to as a degenerate electron gas.
At this stage, we can also understand the very small contribution of the electrons

to the internal energy. According to the concepts we have discussed earlier, only
very few electrons, namely those within the energy smearing of the Fermi edge,
can participate in the thermal energy exchange processes. All other electrons can-
not be excited with thermal energies, since they do not find empty states that they
could occupy after their excitation.
We have to become familiar with the concept of quantum states and their

occupation if we want to understand modern solid-state physics. This is also
necessary for an understanding of superconductivity. In order to get used to
the many new ideas, we will briefly discuss the mechanism generating electrical
resistance. The electrons are described in terms of waves propagating in all
directions through the crystal. An electric current results if slightly more waves
propagate in one direction than in the opposite direction. The electron waves
are scattered because of their interaction with the atomic ions. This scattering
corresponds to collisions in the particle picture. What is new in the wave picture

6) eV (electronvolt) is the standard energy unit of elementary processes: 1 eV= 1.6× 10−19 W s.



1.2 Ideal Diamagnetism, Flux Lines, and Flux Quantization 21

is the fact that this scattering cannot take place for a strongly periodic crystal
lattice. The states of the electrons resulting as the solutions of the Schrödinger
equation represent stable quantum states. Only a perturbation of the periodic
potential, caused by thermal vibrations of the atoms, by defects in the crystal
lattice, or by chemical impurities, can lead to a scattering of the electron waves,
that is, to a change in the occupation of the quantum states. The scattering due
to the thermal vibrations yields a temperature-dependent component of the
resistance, whereas that at crystal defects and chemical impurities yields the
residual resistance.
After this brief and simplified excursion into the modern theoretical treatment

of electronic conduction, we return to our central problem, charge transport with
zero resistance in the superconducting state. Also the new wave mechanical ideas
do not yet provide an easy access to the appearance of a permanent current. We
have only changed the language. Now we must ask: Which mechanisms com-
pletely eliminate any energy exchange with the crystal lattice by means of scat-
tering at finite temperatures within a very narrow temperature interval? It turns
out that an additional new aspect must be taken into account, namely a particu-
lar interaction between the electrons themselves. In our previous discussion we
have treated the quantum states of the individual electrons, and we have assumed
that these states do not change when they become occupied with electrons. How-
ever, if an interaction exists between the electrons, this treatment is no longer
correct. Now we must ask instead: What are the states of the system of electrons
with an interaction, that is, what collective states exist? Here, we encounter the
understanding and also the difficulty of superconductivity. It is a typical collective
quantum phenomenon characterized by the formation of a coherent matter wave,
propagating through the superconductor without any friction.

1.2
Ideal Diamagnetism, Flux Lines, and Flux Quantization

It has been known for a long time that the characteristic property of the super-
conducting state is that it shows no measurable resistance for direct current. If
a magnetic field is applied to such an ideal conductor, permanent currents are
generated by induction, which screen the magnetic field from the interior of the
sample. In Section 1.1 we have seen this principle already for the levitatedmagnet.
What happens if a magnetic fieldBa is applied to a normal conductor and if sub-

sequently, by cooling below the transition temperatureTc, ideal superconductivity
is reached? At first, in the normal state, on application of the magnetic field, eddy
currents flow because of induction. However, as soon as themagnetic field reaches
its final value and no longer changes with time, these currents decay according to
Eq. (1.1), and finally the magnetic fields within and outside the superconductor
become equal.
If now the ideal conductor is cooled below Tc, this magnetic state simply

remains, since further induction currents are generated only during changes of
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the field. Exactly this is expected, if the magnetic field is turned off below Tc. In
the interior of the ideal conductor, the magnetic field remains conserved.
Hence, depending on theway inwhich the final state, namely temperature below

Tc and appliedmagnetic fieldBa, has been reached, within the interior of the ideal
conductor we have completely different magnetic fields.
An experiment by Kamerlingh-Onnes from 1924 appeared to confirm exactly

this complicated behavior of a superconductor. Kamerlingh-Onnes [4] cooled a
hollow sphere made of lead below the transition temperature in the presence of
an applied magnetic field and subsequently turned off the external magnetic field.
Then he observed permanent currents and a magnetic moment of the sphere, as
expected for the case R= 0.
Accordingly, a material with the property R= 0, for the same external variables

T and Ba, could be transferred into completely different states, depending on
the previous history. Therefore, for the same given thermodynamic variables, we
would not have just one well-defined superconducting phase, but, instead, a con-
tinuous manifold of superconducting phases with arbitrary shielding currents,
depending on the previous history. However, the existence of a manifold of super-
conducting phases appeared so unlikely that, before 1933, one referred to only a
single superconducting phase [5] even without experimental verification.
However, a superconductor behaves quite differently from an ideal electrical

conductor. Again, we imagine that a sample is cooled below Tc in the presence of
an appliedmagnetic field. If thismagnetic field is very small, one finds that the field
is completely expelled from the interior of the superconductor except for a very
thin layer at the sample surface. In this way, one obtains an ideal diamagnetic state,
independent of the temporal sequence inwhich themagnetic fieldwas applied and
the sample was cooled.
This ideal diamagnetismwas discovered in 1933 byMeissner andOchsenfeld for

rods made of lead or tin [6]. This expulsion effect, similar to the property R= 0,
can be nicely demonstrated using the “levitated magnet.”7) In order to show the
property R= 0, in Figure 1.3 we have lowered the permanent magnet toward the
superconducting lead bowl, in this way generating permanent currents by induc-
tion. To demonstrate the Meissner–Ochsenfeld effect, we place the permanent
magnet into the lead bowl at T >Tc (Figure 1.7a) and then cool down further.The
field expulsion appears at the superconducting transition: the magnet is repelled
from the diamagnetic superconductor, and it is raised up to the equilibrium height
(Figure 1.7b). In the limit of ideal magnetic field expulsion, the same levitation
height is reached as in Figure 1.3.
What went wrong during the original experiment of Kamerlingh-Onnes? He

used a hollow sphere in order to consume a smaller amount of liquid helium for
cooling. The observations for this sample were correct. However, he had over-
looked the fact that during cooling of a hollow sphere a closed ring-shaped super-
conducting object can be formed, which keeps the magnetic flux penetrating its

7) Also non-superconducting, but diamagnetic objects, such as nuts or frogs, can levitate above mag-
nets. However, one needs very large field gradients [7].
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(a) (b)

Figure 1.7 “Levitated magnet” for demonstrating the Meissner–Ochsenfeld effect in the
presence of an applied magnetic field. (a) Starting position at T > Tc. (b) Equilibrium posi-
tion at T < Tc.

open area constant. Hence, a hollow sphere can act like a superconducting ring
(Figure 1.1), leading to the observed result.
Above, we had assumed that the magnetic field applied to the superconductor

would be “small.” Indeed, one finds that ideal diamagnetism only exists within
a finite range of magnetic fields and temperatures, which, furthermore, also
depends on the sample geometry.
Next, we consider a long, rod-shaped sample where themagnetic field is applied

parallel to the axis. For other shapes, the magnetic field can often be distorted. For
an ideal diamagnetic sphere, at the “equator” the magnetic field is 1.5 times larger
than the externally applied field. In Section 4.6.4, we will discuss these geometric
effects in more detail.
One finds that there exist two different types of superconductors:

• The first type, referred to as type-I superconductors or superconductors of the
first kind, expels the magnetic field up to a maximum value Bc, the critical field.
For larger fields, superconductivity breaks down, and the sample assumes the
normal conducting state. Here, the critical field depends on the temperature and
reaches zero at the transition temperature Tc. Mercury and lead are examples
of a type-I superconductor.

• The second type, referred to as type-II superconductors or superconductors of
the second kind, shows ideal diamagnetism for magnetic fields smaller than the
“lower critical magnetic field” Bc1. Superconductivity completely vanishes for
magnetic fields larger than the “upper critical magnetic field” Bc2, which often
is much larger than Bc1. Both critical fields reach zero at Tc. This behavior is
found in many alloys and also in the high-temperature superconductors. In the
latter, Bc2 can reach even values larger than 100T.

What happens in type-II superconductors in the “Shubnikov phase” between
Bc1 and Bc2? In this regime, the magnetic field only partly penetrates into the sam-
ple. Now shielding currents flow within the superconductor and concentrate the
magnetic field lines, such that a system of flux lines, also referred to as Abrikosov
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Ba

Figure 1.8 Schematic diagram of the Shubnikov phase. The magnetic field and the super-
currents are shown only for two flux lines.

vortices, is generated. For the prediction of quantized flux lines, A. A. Abrikosov
received the Nobel Prize in physics in 2003. In an ideal homogeneous supercon-
ductor in general, these vortices arrange themselves in the form of a triangular
lattice. In Figure 1.8 we show schematically this structure of the Shubnikov phase.
The superconductor is penetrated by magnetic flux lines, each of which carries
a magnetic flux quantum and is located at the corners of equilateral triangles.
Each flux line consists of a system of circulating currents, which in Figure 1.8 are
indicated for two flux lines. These currents together with the external magnetic
field generate the magnetic flux within the flux line and reduce the magnetic field
between the flux lines. Hence, one also talks about flux vortices. With increasing
external field Ba, the distance between the flux lines becomes smaller.
The first experimental proof of a periodic structure of the magnetic field in the

Shubnikov phase was given in 1964 by a group at the Nuclear Research Cen-
ter in Saclay using neutron diffraction [8]. However, they could only observe a
basic period of the structure. Beautiful neutron diffraction experiments with this
magnetic structure were performed by a group at the Nuclear Research Center,
Jülich [9]. Real images of the Shubnikov phase were generated by Essmann and
Träuble [10] using an ingenious decoration technique. In Figure 1.9, we show a
lead–indium alloy as an example. These images of the magnetic flux structure
were obtained as follows: Above the superconducting sample, iron atoms are evap-
orated from a hot wire. During their diffusion through the helium gas in the cryo-
stat, the iron atoms coagulate to form iron colloids.These colloids have a diameter
of less than 50 nm, and they slowly approach the surface of the superconductor. At
this surface, the flux lines of the Shubnikov phase exit from the superconductor.
In Figure 1.8, this is shown for two flux lines.The ferromagnetic iron colloid is col-
lected at the locations where the flux lines exit from the surface, since here they
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Figure 1.9 Image of the vortex lattice
obtained with an electron microscope follow-
ing the decoration with iron colloid. Frozen-
in flux after the magnetic field has been
reduced to zero. Material: Pb +6.3 at% In;

temperature: 1.2 K; sample shape: cylinder,
60mm long, 4mm diameter; and magnetic
field Ba parallel to the axis. Magnification:
8300×. (Reproduced by courtesy of Dr Ess-
mann.)

find the largest magnetic field gradients. In this way, the flux lines can be dec-
orated. Subsequently, the structure can be observed in an electron microscope.
The image shown in Figure 1.9 was obtained in this way. Such experiments con-
vincingly confirmed the vortex structure predicted theoretically by Abrikosov.
The question remains whether the decorated locations at the surface indeed

correspond to the ends of the flux lines carrying only a single flux quantum. In
order to answer this question, we just have to count the number of flux lines and
also have to determine the total flux, say, by means of an induction experiment.
Then we find the value of the magnetic flux of a flux line by dividing the total
fluxΦtot through the sample by the number of flux lines. Such evaluations exactly
confirmed that in highly homogeneous type-II superconductors, each flux line
contains a single flux quantum Φ0 = 2.07× 10−15 Tm2.
Today, we know different methods for imaging magnetic flux lines. Often, the

methods supplement each other and provide valuable information about super-
conductivity. Therefore, we will discuss some of them in more detail.
Neutron diffraction and decoration still represent important techniques.

Figure 1.10a shows a diffraction pattern observed at the Institute Laue-Langevin
in Grenoble by means of neutron diffraction at the vortex lattice in niobium. The
triangular structure of the vortex lattice can clearly be seen from the diffraction
pattern.
Magneto-optics represents another method for spatially imaging magnetic

structures. Here, one utilizes the Faraday effect. If linearly polarized light passes
through a thin layer of a “Faraday-active” material such as a ferrimagnetic garnet
film, the plane of polarization of the light will be rotated due to a magnetic field
within the garnet film. A transparent substrate, covered with a thin ferrimagnetic
garnet film, is placed on top of a superconducting sample and is irradiated with
polarized and well-focused light. The light is reflected at the superconductor,
passes through the ferrimagnetic garnet film again, and is then focused into a
CCD camera. The magnetic field from the vortices in the superconductor pene-
trates into the ferrimagnetic garnet film and there causes a rotation of the plane
of polarization of the light. An analyzer located in front of the CCD camera only
transmits light whose polarization is rotated away from the original direction.
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Figure 1.10 Methods for the imaging of
flux lines. (a) Neutron diffraction pattern of
the vortex lattice in niobium (Figure kindly
provided by Institute Max von Laue-Paul
Langevin, Grenoble; Authors: E. M. For-
gan (Univ. Birmingham), S. L. Lee (Univ. St.
Andrews), D. McK.Paul (Univ. Warwick), H.
A. Mook (Oak Ridge) and R. Cubitt (ILL).). (b)
Magneto-optical image of vortices in NbSe2

[11]. (c) Lorentz microscopy of niobium
(Figure kindly provided by A. Tonomura, Fa.
Hitachi Ltd.). (d) Electron holography of Pb
[12]. (e) Low-temperature scanning electron
microscopy of YBa2Cu3O7 [13]. (f ) Scanning
tunneling microscopy of NbSe2 (Figure kindly
provided by Fa. Lucent Technologies Inc./Bell
labs).

In this way, the vortices appear as bright dots, as shown in Figure 1.10b for the
compound NbSe2 [11].8) This method yields a spatial resolution of more than
1 μm. Presently, one can take about 10 images/s, also allowing the observation
of dynamic processes. Unfortunately, at this time, the method is restricted to
superconductors with a very smooth and highly reflecting surface.
For Lorentz microscopy, an electron beam is transmitted through a thin super-

conducting sample. The samples must be very thin, and the electron energy must
be high in order that the beam penetrates through the sample. Near a flux line
the transmitted electrons experience an additional Lorentz force, and the elec-
tron beam is slightly defocused due to the magnetic field gradient of a flux line.
The phase contrast caused by the flux lines can be imaged beyond the focus of the

8) We note that in this case the vortex lattice is strongly distorted. Such distorted lattices will be dis-
cussed in more detail in Section 5.3.2.
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transmission electron microscope. Because of the deflection, each vortex appears
as a circular signal: one half of which is bright, and the other half is dark. This
alternation between bright and dark also yields the polarity of the vortex. Lorentz
microscopy allows a very rapid imaging of the vortices, such that motion pic-
tures can be taken, clearly showing the vortex motion, similar to the situation
for magneto-optics [14]. Figure 1.10c shows such an image obtained for niobium
by A. Tonomura (Hitachi Ltd). This sample carried small micro-holes (antidots)
arranged as a square lattice. In the image, most of themicro-holes are occupied by
vortices, and some vortices are located between the antidots. The vortices enter
the sample from the top side. Then they are hindered from further penetration
into the sample by the antidots and by the vortices already existing in the super-
conductor.
Electron holography [14] is based on the wave nature of electrons. Similar to

optical holography, a coherent electron beam is split into a reference wave and an
object wave, which subsequently interferewith each other.The relative phase posi-
tion of the two waves can be influenced by a magnetic field, or more accurately by
themagnetic flux enclosed by both waves.The effect utilized for imaging is closely
related to the magnetic flux quantization in superconductors. In Section 1.5.2, we
will discuss this effect in more detail. In Figure 1.10d, the magnetic stray field gen-
erated by vortices near the surface of a lead film is shown [12]. The alternation
from bright to dark in the interference stripes corresponds to the magnetic flux of
one flux quantum. On the left side the magnetic stray field between two vortices
of opposite polarity joins together, whereas on the right side the stray field turns
away from the superconductor.
For imaging by means of low-temperature scanning electron microscopy

(LTSEM), an electron beam is scanned along the surface of the sample to be
studied. As a result, the sample is heated locally by a few kelvin within a spot
of about 1 μm diameter. An electronic property of the superconductor, which
changes due to this local heating, is then measured. With this method, many
superconducting properties, such as, the transition temperature Tc, can be
spatially imaged [15]. In the special case of the imaging of vortices, the magnetic
field of the vortex is detected using a superconducting quantum interferometer
(or superconducting quantum interference device, “SQUID,” see Section 1.5.2)
[13]. If the electron beam passes close to a vortex, the supercurrents flowing
around the vortex axis are distorted, resulting in a small displacement of the
vortex axis toward the electron beam. This displacement also changes the
magnetic field of the vortex detected by the quantum interferometer, and this
magnetic field change yields the signal to be imaged. A typical image of vortices
in the high-temperature superconductor YBa2Cu3O7 is shown in Figure 1.10e.
Here, the vortices are located within the quantum interferometer itself. Sim-
ilar to Lorentz microscopy, each vortex is indicated as a circular bright/dark
signal, generated by the displacement of the vortex in different directions. The
dark vertical line in the center indicates a slit in the quantum interferometer,
representing the proper sensitive part of the magnetic field sensor. We note
the highly irregular arrangement of the vortices. A specific advantage of this
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technique is the fact that very small displacements of the vortices from their
equilibrium position can also be observed, since the SQUID already detects a
change of the magnetic flux of only a few millionths of a magnetic flux quantum.
Such changes occur, for example, if the vortices statistically jump back and forth
between two positions due to thermal motion. Since such processes can strongly
reduce the resolution of SQUIDs, they are being carefully investigated using
LTSEM.
As the last group of imaging methods, we wish to discuss the scanning probe

techniques, in which a suitable detector is moved along the superconductor. The
detector can be a magnetic tip [16], a micro-Hall probe [17], or a SQUID [18].
In particular, the latter method has been used in a series of key experiments for
clarifying our understanding of high-temperature superconductors. These exper-
iments will be discussed in Section 3.2.2. Finally, the scanning tunneling micro-
scope yielded similarly important results. Here, a non-magnetic metallic tip is
scanned along the sample surface. The distance between the tip and the sam-
ple surface is so small that electrons can flow from the sample surface to the tip
because of the quantum mechanical tunneling process.
Contrary to the methods mentioned earlier, (all of which detect the magnetic

field of vortices), with the scanning tunneling microscope one images the spatial
distribution of the electrons, or more exactly of the density of the allowed
quantummechanical states of the electrons [19].This technique can reach atomic
resolution. In Figure 1.10f we show an example. This image was obtained by H.
F. Hess and coworkers (Bell Laboratories, Lucent Technologies Inc.) using an
NbSe2 single crystal. The applied magnetic field was 1000G= 0.1 T. Later, we
will discuss the fact that, near the vortex axis, the superconductor is normal
conducting. It is this region where the tunneling currents between the tip and the
sample reach their maximum values. Hence, the vortex axis appears as a bright
spot.
In addition to the imaging methods, there exists a series of other techniques

for characterizing the vortex state. In the case of muon-spin-resonance (μSR),
the superconductor is irradiated with spin-polarized, usually positively charged
muons, which are generated by a particle accelerator. The muons are rapidly
stopped within the superconductor. In the local magnetic fields, the spin of the
muon precesses. After about 2 μs, the muon decays into two neutrinos and one
positron. During the decay, the positron is emitted along the direction of the
muon spin. Hence, its detection yields information about the local magnetic fields
in the interior of the superconductor and thereby also about the structure of the
flux-line lattice. Other indirect methods are based, for example, on the analysis of
the specific heat or of transport phenomena such as the thermal conductivity or
the electric conductivity, which becomes finite at sufficiently large currents (see
Chapter 5).
Finally, we note that a superconductor can also levitate in the state of the Shub-

nikov phase.The superconductorYBa2Cu3O7 shown in Figure 1.4 had been cooled
in the field of the permanentmagnets andwas penetrated bymagnetic flux lines. It
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is essential that the flux lines can be pinned at defects within the superconductor.
The corresponding physics will be discussed in Section 5.3.2.
In the case of the “hard” superconductors, this pinning phenomenon is par-

ticularly effective. If they are pinned, the flux lines cannot move as long as the
maximum pinning force of the pinning centers is not exceeded. As a result, the
hard superconductor will keep the field in its interior at the value at which it had
been cooled down.
If the superconductor is cooled down at a certain distance above a permanent

magnet, an attractive force is acting if one tries to move the superconductor away
from the magnet. Similarly, a repulsive force is generated if the superconductor
is moved closer to the permanent magnet. In the end, the hard superconductor
tries to keep exactly the distance to the magnet in which it was cooled down.
The same applies to any other motional direction. As soon as the external field
changes, shielding currents are generated in the hard superconductor in such a
way that the field (and the flux-line lattice) in its interior does not change. There-
fore, a hard superconductor including a heavy load can not only levitate above a
magnet as shown in Figure 1.4, but it can also hang freely below a magnet, or it
can be positioned at an arbitrary angle.This effect is demonstrated in Figure 1.11.
In this case suitably prepared small blocks made of YBa2Cu3O7 were mounted
within a toy train, and the blocks were cooled down at a certain distance from
the magnets, which represented the “train tracks.” The train can move along the
tracks practically without friction, since themagnetic field remains constant along
this direction.
With this toy train a special trick was demonstrated, which keeps the hang-

ing train from falling down after heating above Tc. Permanent magnets were
installed in the train in such a way that in the absence of the superconductor the
train would be pulled to the track. This happens exactly, if the superconductor
heats up. However, in the superconducting state, against the attraction by the

Figure 1.11 Hanging toy train [20] (Leibniz Institute for Solid State and Materials Research,
Dresden).
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permanent magnets the train is kept away from the track and can move freely
along it.

1.3
Flux Quantization in a Superconducting Ring

Again we look at the experiment shown in Figure 1.1. A permanent current has
been generated in a superconducting ring by induction. How large is themagnetic
flux through the ring?
The flux is given by the product of the self-inductance L of the ring and the

current I circulating in the ring: Φ= LI. From our experience with macroscopic
systems, we would expect that we could generate by induction any value of the
permanent current by the proper choice of the magnetic field.Then also the mag-
netic flux through the ring could take any arbitrary value. On the other hand,
we have seen that in the interior of type-II superconductors magnetic fields are
concentrated in the form of flux lines, each of which carries a single flux quan-
tum Φ0. Now the question arises whether the flux quantum also plays a role in a
superconducting ring. Already in 1950 such a presumption was expressed by Fritz
London [21].
In 1961, two groups, namely Doll and Näbauer [22] in Munich and Deaver and

Fairbank [23] in Stanford, published the results of flux quantization measure-
ments using superconducting hollow cylinders, which clearly showed that the
magnetic flux through the cylinder only appears in multiples of the flux quantum
Φ0. These experiments had a strong impact on the development of supercon-
ductivity. Because of their importance and their experimental excellence, we will
discuss these experiments in more detail.
For testing the possible existence of flux quantization in a superconducting ring

or hollow cylinder, permanent currents had to be generated using different mag-
netic fields, and the resultingmagnetic flux had to be determinedwith a resolution
of better than a flux quantum Φ0. Due to the small value of the flux quantum,
such experiments are extremely difficult. To achieve a relatively large change of
the magnetic flux in different states, one must try to keep the flux through the
ring in the order of only a few Φ0. Hence, one needs very small superconduct-
ing rings, since otherwise the magnetic fields required to generate the permanent
currents become too small. We refer to these fields as “freezing fields,” since the
generated flux through the opening of the ring is “frozen-in” during the onset of
superconductivity. For example, in an opening of only 1mm2, one flux quantum
already exists in a field of only 2× 10−9 T.
Therefore, both groups used very small samples in the form of thin tubes

with a diameter of only about 10 μm. For this diameter, one flux quantum
Φ0 = h/2e= 2.07× 10−15 Tm2 is generated in a field of only Φ0/πr2 = 2.6× 10−5 T.
With careful shielding of perturbing magnetic fields, for example, of the Earth’s
magnetic field, such fields can be well controlled experimentally.
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Figure 1.12 Schematics of the experimental setup
of Doll and Näbauer. (From [22].) The quartz rod
carries a small lead cylinder formed as a thin layer
by evaporation. The rod vibrates in liquid helium.

Doll and Näbauer utilized lead cylinders evaporated onto little quartz rods
(Figure 1.12). Within these lead cylinders, a permanent current is generated by
cooling in a freezing field Bf oriented parallel to the cylinder axis and by turning
off this field after the onset of superconductivity at T <Tc. The permanent
current turns the lead cylinder into a magnet. In principle, the magnitude of the
frozen-in flux can be determined from the torque exerted upon the sample due
to the measuring field BM oriented perpendicular to the cylinder axis. Therefore,
the sample is attached to a quartz thread. The deflection can be indicated by
means of a light beam and a mirror. However, the attained torque values were too
small to be detected in a static experiment using extremely thin quartz threads.
Doll and Näbauer circumvented this difficulty using an elegant technique, which
may be called a self-resonance method.
They utilized the small torque exerted upon the lead cylinder by the measuring

field to excite a torsional oscillation of the system. At resonance, the amplitudes
become sufficiently large that they can be recorded without difficulty. At reso-
nance, the amplitude is proportional to the acting torque to be measured. For the
excitation, the magnetic field BM must be reversed periodically at the frequency
of the oscillation. To ensure that the excitation always follows the resonance fre-
quency, the reversal of the fieldwas controlled by the oscillating system itself using
the light beam and a photocell.
In Figure 1.13 we show the results of Doll and Näbauer. On the ordinate the res-

onance amplitude is plotted, divided by the measuring field, that is, a quantity
proportional to the torque to be determined. The abscissa indicates the freez-
ing field. If the flux in the superconducting lead cylinder varied continuously, the
observed resonance amplitude also should vary proportional to the freezing field
(dashed straight line in Figure 1.13). The experiment clearly indicates a differ-
ent behavior. Up to a freezing field of about 1× 10−5 T, no flux at all is frozen-in.
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Figure 1.13 Results of Doll and Näbauer on the magnetic flux quantization in a Pb cylin-
der (1 G= 10−4 T). .(From [22].)

The superconducting lead cylinder remains in the energetically lowest state with
Φ= 0. Only for freezing fields larger than 1× 10−5 T does a state appear contain-
ing frozen-in flux. For all freezing fields between 1× 10−5 and about 3× 10−5 T,
the state remains the same. In this range, the resonance amplitude is constant.
The flux calculated from this amplitude and from the parameters of the apparatus
corresponds approximately to a flux quantumΦ0 = h/2e. For larger freezing fields,
additional quantum steps are observed.This experiment clearly demonstrates that
themagnetic flux through a superconducting ring can take up only discrete values
Φ= nΦ0.
An example of the results of Deaver and Fairbank is shown in Figure 1.14.Their

results also demonstrated the quantization of magnetic flux through a supercon-
ducting hollow cylinder and confirmed the elementary flux quantum Φ0 = h/2e.
Deaver and Fairbank used a completely different method for detecting the frozen-
in flux.Theymoved the superconducting cylinder back and forth by 1mmalong its
axis at a frequency of 100Hz. As a result, in two small detector coils surrounding
the two ends of the little cylinder, respectively, an inductive voltage was gener-
ated, which could be measured after sufficient amplification. In Figure 1.14 the
flux through the little tube is plotted in multiples of the elementary flux quantum
Φ0 versus the freezing field. The states with 0, 1, and 2 flux quanta can clearly
be seen.
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Figure 1.14 Results of Deaver and Fairbank on the magnetic flux quantization in a Sn
cylinder. The cylinder was about 0.9mm long, and had an inner diameter of 13 μm and a
wall thickness of 1.5 μm (1G= 10−4 T). (From [23].)

1.4
Superconductivity: A Macroscopic Quantum Phenomenon

Next, we will deal with the conclusions to be drawn from the quantization of the
magnetic flux in units of the flux quantum Φ0.
For atoms we are well used to the appearance of discrete states. For example,

the stationary atomic states are distinguished due to a quantum condition for the
angular momentum appearing in multiples of ℏ = h∕2π. This quantization of the
angularmomentum is a result of the condition that the quantummechanical wave
function, indicating the probability of finding the electron, be single-valued. If we
move around the atomic nucleus starting from a specific point, the wave function
must reproduce itself exactly if we return to this starting point. Here, the phase
of the wave function can change by an integer multiple of 2π, since this does not
affect the wave function.
We can have the same situation also on a macroscopic scale. Imagine that we

have an arbitrary wave propagating without damping in a ring with radius R. The
wave can become stationary if an integer numbern ofwavelengths𝜆 exactly fit into
the ring. Then we have the condition n𝜆= 2πR or kR= n, using the wavenumber
k = 2π/𝜆. If this condition is violated, after a few revolutions the wave disappears
due to interference.
Next we apply these ideas to an electron wave propagating around the ring. For

an exact treatment, we would have to solve the Schrödinger equation for the rel-
evant geometry. However, we refrain from this and, instead, we restrict ourselves
to a semiclassical treatment, also yielding the essential results.
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We start with the relation between the wave vector of the electron and its
momentum. According to de Broglie, for an uncharged quantum particle we
have 𝐩kin = ℏ𝐤, where pkin =mv denotes the “kinetic momentum” (where m is
the mass and v is the velocity of the particle). This yields the kinetic energy of the
particle: Ekin = (pkin)2/2m. For a charged particle as the electron, according to the
rules of quantum mechanics, the wave vector k depends on the so-called vector
potential A. This vector potential is connected with the magnetic field through
the relation9)

curl𝐀 = 𝐁 (1.4)

We define the “canonical momentum”

𝐩can = m𝐯 + q𝐀 (1.5)

where m is the mass and q is the charge of the particle. Then the relation between
the wave vector k and pcan is

𝐩can = ℏ𝐤 (1.6)

Now we require that an integer number of wavelengths exists within the ring.
We integrate k along an integration path around the ring, and we set this integral
equal to an integer multiple of 2π. Then we have

n•2π = ∮ 𝐤d𝐫 = 1
ℏ∮ 𝐩can d𝐫 = m

ℏ ∮ 𝐯d𝐫 +
q
ℏ∮ 𝐀d𝐫 (1.7)

According to Stokes’ theorem, the second integral (∮ 𝐀d𝐫) on the right-hand
side can be replaced by the area integral ∫F curl𝐀d𝐟 taken over the area F
enclosed by the ring. However, this integral is nothing other than the magnetic
flux ∫F curl𝐀d𝐟 = ∫F 𝐁d𝐟 = Φ enclosed by the ring. Hence, Eq. (1.7) can be
changed into

n h
q
= m

q ∮ 𝐯d𝐫 + Φ (1.8)

Here, we have multiplied Eq. (1.7) by ℏ∕q and used ℏ = h∕2π.
In this way, we have found a quantum condition connecting the magnetic flux

through the ring with Planck’s constant and the charge of the particle. If the path
integral on the right-hand side of Eq. (1.8) is constant, the magnetic flux through
the ring changes exactly by a multiple of h/q.
So far we have discussed only a single particle. However, what happens if all or

at least many charge carriers occupy the same quantum state? Also in this case, we
can describe these charge carriers in terms of a single coherent matter wave with

9) The “curl” of a vector A is again a vector, the components (curlA)x, … of which are constructed
from the components Ai in the following way:

(curl𝐀)x =
∂Az

∂y
−

∂Ay

∂z
; (curl𝐀)y =

∂Ax

∂z
−

∂Az

∂x
, (curl𝐀)z =

∂Ay

∂x
−

∂Ax

∂y
.
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a well-defined phase, and where all charge carriers jointly change their quantum
states. In this case, Eq. (1.8) is also valid for this coherent matter wave.
However, now we are confronted with the problem that electrons must satisfy

the Pauli principle and must occupy different quantum states, like all quantum
particles having half-integer spin. Here, the solution comes from the pairing of
two electrons, forming Cooper pairs in an ingenious way. In Chapter 3, we will
discuss this pairing process in more detail. Then each pair has an integer spin
that is equal to zero for most superconductors. The coherent matter wave can be
constructed from these pairs.Thewave is connected with themotion of the center
of mass of the pairs, which is identical for all pairs.
Next, we will further discuss Eq. (1.8) and see what conclusions can be drawn

regarding the superconducting state. We start by connecting the velocity v with
the supercurrent density js via js = qnsv. Here, ns denotes the density of the super-
conducting charge carriers. For generality, we keep the notation q for the charge.
Now Eq. (1.8) can be rewritten as

n h
q
= m

q2ns∮ 𝐣s d𝐫 + Φ (1.9)

Furthermore, we introduce the abbreviation m/(q2ns) = 𝜇0𝜆
2
L. The length

𝜆L =
√

m∕(𝜇0q2ns) (1.10)

is the London penetration depth (where q is the charge, m is the particle mass, ns
is the particle density, and 𝜇0 is the permeability). In the following, we will deal
with the penetration depth 𝜆L many times. With Eq. (1.10), we find

n h
q
= 𝜇0𝜆

2
L∮ 𝐣s d𝐫 + Φ (1.11)

Equation (1.11) represents the quantization of the fluxoid. The expression
on the right-hand side denotes the “fluxoid.” In many cases, the supercurrent
density and, hence, the line integral on the right-hand side of Eq. (1.11) are
negligibly small. This happens in particular if we deal with a thick-walled super-
conducting cylinder or with a ring made of a type-I superconductor. Because
of the Meissner–Ochsenfeld effect, the magnetic field is expelled from the
superconductor. The shielding supercurrents only flow near the surface of the
superconductor and decay exponentially toward the interior, as we will discuss
further below. We can place the integration path, along which Eq. (1.11) must
be evaluated, deep in the interior of the ring. In this case, the integral over the
current density is exponentially small, and we obtain in good approximation

Φ ≈ n h
q

(1.12)

However, this is exactly the condition for the quantization of the magnetic
flux, and the experimental observation Φ = n(h∕2|e|) = nΦ0 clearly shows that
the super-conducting charge carriers have the charge |q|= 2e. The sign of the
charge carriers cannot be found from the observation of the flux quantization,
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since the direction of the particle current is not determined in this experiment.
In many superconductors, the Cooper pairs are formed by electrons, that is,
q=−2e. On the other hand, in many high-temperature superconductors, we have
hole conduction similar to that found in p-doped semiconductors. Here, we have
q=+2e.
Next, we turn to a massive superconductor without any hole in its geometry.

We assume that the superconductor is superconducting everywhere in its interior.
Thenwe can imagine an integration pathwith an arbitrary radius placed around an
arbitrary point, and again we obtain Eq. (1.11) similar to the case of the ring. How-
ever, now we can consider an integration path having a smaller and smaller radius
r. It is reasonable to assume that on the integration path the supercurrent density
cannot become infinitely large. However, then the line integral over js approaches
zero, since the circumference of the ring vanishes. Similarly, the magnetic flux Φ,
which integrates the magnetic field B over the area enclosed by the integration
path, approaches zero, since this area becomes smaller and smaller. Here, we have
assumed that the magnetic field cannot become infinite. As a result, the right-
hand side of Eq. (1.11) vanishes, and we have to also conclude that the left-hand
sidemust vanish, that is, n= 0, if we are dealingwith a continuous superconductor.
Now we assume again a finite integration path, and with n= 0 we have the con-

dition

𝜇0𝜆
2
L∮ 𝐣s d𝐫 = −Φ = −∫F

𝐁d𝐟 (1.13)

Using Stokes’ theorem again, this condition can also be written as

𝐁 = −𝜇0𝜆
2
L curl 𝐣s (1.14)

Equation 1.14 is the second London equation, which we will derive below in a
slightly different way. It is one of two fundamental equations with which the two
brothers F. London and H. London already in 1935 had constructed a successful
theoretical model of superconductivity [24].
Next, we turn to the Maxwell equation curlH= j, which we change to

curl𝐁 = 𝜇0 𝐣s (1.15)

using B=𝜇𝜇0H, 𝜇≈ 1 for non-magnetic superconductors and j= js. Again we
take the curl of both sides of Eq. (1.15), replace curl js with the help of Eq. (1.14),
and continue to use the relation10) curl(curlB)= grad(div B)−ΔB and Maxwell’s
equation divB= 0. Thereby we obtain

Δ𝐁 = 1
𝜆2L

𝐁 (1.16)

This differential equation produces the Meissner–Ochsenfeld effect, as we can
see from a simple example. For this purpose, we consider the surface of a very large

10) Notation: “div” is the divergence of a vector, div𝐁 = ∂Bx∕∂x + ∂By∕∂y + ∂Bz∕∂z; “grad” is the gradi-
ent, grad f (x, y, z) = (∂f ∕∂x, ∂f ∕∂y, ∂f ∕∂z); andΔ is the Laplace operator,Δf = ∂2f ∕∂x2 + ∂2f ∕∂y2 +
∂2f ∕∂z2. In Eq. (1.16) the latter must be applied to the three components of B.
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Figure 1.15 Decrease in the magnetic field within the
superconductor near the planar surface.

superconductor, located at the coordinate x= 0 and extended infinitely along the
(x, y) plane. The superconductor occupies the half-space x> 0 (see Figure 1.15).
An external magnetic field Ba = (0, 0, Ba) is applied to the superconductor. Due to
the symmetry of our problem, we can assume that within the superconductor only
the z-component of the magnetic field is different from zero and is only a function
of the x-coordinate. Equation 1.16 then yields forBz(x) within the superconductor,
that is, for x> 0:

d2Bz(x)
dx2

= 1
𝜆2L

Bz(x) (1.17)

This equation has the solution

Bz(x) = Bz(0) × exp(−x∕𝜆L) (1.18)

which is shown in Figure 1.15. Within the length 𝜆L the magnetic field is reduced
by the factor 1/e, and the field vanishes deep within the superconductor.
We note that Eq. (1.17) also yields a solution increasing with x:

Bz(x) = Bz(0) × exp(+x∕𝜆L)

However, this solution leads to an arbitrarily large magnetic field in the super-
conductor and, hence, is not meaningful.
FromEq. (1.10) we can obtain a rough estimate of the London penetration depth

with the simplifying assumption that one electron per atom with free-electron
mass me contributes to the supercurrent. For tin, for example, such an estimate
yields 𝜆L = 26 nm. This value deviates only little from the measured value, which
at low temperatures falls in the range 25–36 nm.
Only a few nanometers away from its surface, the superconducting half-space

is practically free of the magnetic field and displays the ideal diamagnetic state.
The same can be found for samples with a more realistic geometry, for example,
a superconducting rod, as long as the radii of curvature of the surfaces are much
larger than 𝜆L and the superconductor is also much thicker than 𝜆L. Then on a
length scale of 𝜆L, the superconductor closely resembles a superconducting half-
space. Of course, for an exact solution, Eq. (1.16) must be solved.
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Figure 1.16 Spatial dependence of the magnetic field in a thin superconducting layer of
thickness d. For the assumed ratio d/𝜆L = 3, the magnetic field only decreases to about half
of its outside value.

The London penetration depth depends on temperature. From Eq. (1.10) we
see that 𝜆L is proportional to 1/ns

1/2. We can assume that the number of elec-
trons combined intoCooper pairs decreaseswith increasing temperature and van-
ishes at Tc. Above the transition temperature, no stable Cooper pairs should exist
anymore.11) Hence, we expect that 𝜆L increases with increasing temperature and
diverges at Tc. Correspondingly, the magnetic field penetrates further and fur-
ther into the superconductor until it homogeneously fills the sample above the
transition temperature.
We consider now in some detail a superconducting plate with thickness d. The

plate is arranged parallel to the (y, z) plane, and a magnetic field Ba is applied par-
allel to the z-direction.This geometry is shown in Figure 1.16. Also in this case, we
can calculate the spatial variation of the magnetic field within the superconductor
using the differential equation (1.17). However, now the magnetic field is equal to
the applied field Ba at both surfaces, that is, at x=±d/2. To find the solution, we
have to also take into account the exponential function increasing with x. As an
ansatz we chose the linear combination

Bz(x) = B1e−x∕𝜆L + B2e+x∕𝜆L (1.19)

11) Here, we neglect thermal fluctuations by which Cooper pairs can be generated momentarily also
above Tc. We will return to this point in Section 4.8.
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For x= d/2, we find

Ba = Bz

(
d
2

)
= B1e−d∕2∕𝜆L + B2e+d∕2𝜆L (1.20)

Since our problem is symmetric for x and −x for the chosen coordinate system,
we have B1 =B2 =B* and we obtain

Ba = B∗(ed∕2𝜆L + e−d∕2𝜆L ), with B∗ =
Ba

2 cosh(d∕2𝜆L)
(1.21)

Hence, we find within the superconductor

Bz(x) = Ba
cosh(x∕𝜆L)
cosh(d∕𝜆L)

(1.22)

This result is shown in Figure 1.16. For d ≫ 𝜆L, the field decays exponentially
in the superconductor away from the two surfaces, and the interior of the plate is
nearly free of magnetic field. However, for decreasing thickness d the variation of
the magnetic field becomes smaller and smaller, since the shielding layer cannot
develop completely anymore. Finally, for d ≪ 𝜆L, the field varies only little over
the thickness. Now the field penetrates practically homogeneously through the
superconducting layer.
For the cases of the superconducting half-space and of the superconducting

plate, we also calculate the shielding current flowing within the superconduc-
tor. From the variation of the magnetic field, we find the density of the shielding
current using the first Maxwell equation (1.15), which reduces to the equation
𝜇0js,y = −(dBz∕dx) for B= (0, 0,Bz(x)). Hence, the current density only has a y-
component, which decreases from the surface toward the interior of the super-
conductor, similar to the magnetic field.
For the case of the superconducting half-space, one finds js,y = (Ba∕𝜇0𝜆L)e−x∕𝜆L .

Therefore, at the surface the current density is Ba/𝜇0𝜆L. For the case of the thin
plate we obtain js,y = −(Ba∕𝜇0𝜆L)(sinh(x∕𝜆L)∕ cosh(d∕𝜆L)), which reduces to
js,y(−d∕2) = (Ba∕𝜇0𝜆L) tanh(d∕2𝜆L) at the surface at x=−d/2. At x= d/2, the
supercurrent density is the negative of this value.
We see that at x=−d/2 the supercurrents flow into the plane of the paper, and at

x= d/2 they flow out of this plane. Noting that for a plate with finite size these cur-
rentsmust join together, we are dealing with a circulating current flowing near the
surface around the plate. The magnetic field generated by this current is oriented
in the direction opposite to that of the applied field. Hence, the plate behaves like
a diamagnet.
How can one measure the London penetration depth? In principle, one must

determine the influence of the thin shielding layer upon the diamagnetic behavior.
This has been done using several different methods.
For example, one can determine themagnetization of thinner and thinner plates

[25]. As long as the thickness of the plate is much larger than the penetration
depth, one will find a nearly ideal diamagnetic result, which will decrease, how-
ever, if the plate thickness approaches the range of 𝜆L. Another method is μSR,
which is sensitive to local magnetic fields, as discussed in Section 1.2. In order to
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determine the penetration depth in the Meissner state, the muons are implanted
into different depths by varying the implantation energy. In this way, one finds 𝜆L
[26].
Other methods are based on the Shubnikov phase and determine 𝜆L from the

diameter of the flux lines.
To determine the temperature dependence of 𝜆L, only relative measurements

are needed. One can determine the resonance frequency of a cavity fabricated
from a superconductingmaterial.The resonance frequency depends sensitively on
the geometry. If the penetration depth varies with the temperature, this is equiv-
alent to a variation of the geometry of the cavity and, hence, of the resonance
frequency, yielding the change of 𝜆L [27]. We will present experimental results in
Section 4.5.
A strong interest in the exact measurement of the penetration depth, say, as a

function of temperature, magnetic field, or the frequency of the microwaves for
excitation, arises because of its dependence on the density of the superconducting
charge carriers. It yields important information on the superconducting state and
can serve as a sensor for studying superconductors.
Let us now return to our discussion of the macroscopic wave function. The

concept of the coherent matter wave formed by the charge carriers in the super-
conducting state has already provided the explanation of ideal diamagnetism and
of the fluxoid quantization or of flux quantization. Furthermore, we have found
a fundamental length scale of superconductivity, namely the London penetration
depth.
What causes the difference between type-I and type-II superconductivity and

the generation of vortices? From the assumption of a continuous superconductor,
we have obtained the second London equation and ideal diamagnetism. In type-
I superconductors, this state is established as long as the applied magnetic field
does not exceed a critical value. At higher fields superconductivity breaks down.
For a discussion of the critical magnetic field, we must treat the energy of a super-
conductor more accurately. This will be done in Chapter 4. We will see that it is
the competition between two energies, the energy gain from the condensation of
Cooper pairs and the energy loss due to themagnetic field expulsion, which causes
the transition between the superconducting and the normal conducting state.
At small magnetic fields, the Meissner phase is also established in type-II

superconductors. However, at the lower critical field, vortices appear within
the material. Turning again to Eq. (1.11), we see that the separation of the
magnetic flux into units12) of ±1Φ0 corresponds to states with quantum number
n=±1. However, the discussion of the Meissner state has also shown that
the superconductor cannot display continuous superconductivity anymore.
Instead, we must assume that the vortex axis is not superconducting, similar
to the ring geometry. In this case, the integration path cannot be contracted
to a point anymore, and the derivation of the second London equation with
n= 0, resulting in the Meissner–Ochsenfeld effect, is no longer valid. A more

12) The sign must be chosen according to the direction of the magnetic field.
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accurate treatment based on the Ginzburg–Landau theory shows that, on a
length scale 𝜉GL, the Ginzburg–Landau coherence length, superconductivity
vanishes as one approaches the vortex axis (see also Section 4.7.2). Depending
on the superconducting material, this length ranges between a few and a few
hundred nanometers. Similar to the London penetration depth, it is temperature
dependent, in particular close to Tc.
In the Shubnikov phase, the superconductor is penetrated bymany normal con-

ducting lines. However, why does each vortex carry exactly one flux quantumΦ0?
Again we must look at the energy of a superconductor. Essentially we find that in
a type-II superconductor, it is energetically favorable if it generates a supercon-
ductor/normal conductor interface above the lower critical magnetic field (see
Section 4.7).Therefore, as many of these interfaces as possible are generated.This
is achieved by choosing the smallest quantum state with n=±1, since in this case
the maximum number of vortices and the largest interface area near the vortex
axis is established.
We could use Eq. (1.11) for calculating how far the magnetic field of a flux line

extends into the superconductor. However, we refrain from presenting this calcu-
lation. It turns out that also in this case the field decreases nearly exponentially
with the distance from the vortex axis on the length scale 𝜆L. Hence, we can say
that the flux line has a magnetic radius of 𝜆L.
Now we can also estimate the lower critical field Bc1. Each flux line car-

ries a flux quantum Φ0, and one needs at least a magnetic field Bc1 ≈ Φ0∕
(cross-sectional area of the flux line) ≈ Φ0∕(π𝜆2L) to generate this amount of flux.
With a value of 𝜆L = 100 nm, one finds Bc1 ≈ 66mT.
For increasing magnetic field, the flux lines are packed closer and closer to each

other, until near Bc2 their distance is about equal to the Ginzburg–Landau coher-
ence length 𝜉GL. For a simple estimate of Bc2, we assume a cylindrical normal
conducting vortex core. Then superconductivity is expected to vanish if the dis-
tance between the flux quanta becomes equal to the core diameter, that is, at
Bc2 ≈ Φ0∕(πξ2GL). An exact theory yields a value smaller by a factor of 2.13) We note
that, depending on the value of 𝜉GL, Bc2 can become very large. With the value
𝜉GL = 2 nm, one obtains a field larger than 80T. Such high values of the upper
critical magnetic field are reached or even exceeded in high-temperature super-
conductors.
At the end of this section, we wish to ask how permanent current and zero

resistance, the key phenomena of superconductivity, can be explained in terms
of the macroscopic wave function. Therefore, we look at the second London
equation (1.14), 𝐁 = −𝜇0𝜆

2
L curl 𝐣s, and in addition we use Maxwell’s equation

curl𝐄 = −d𝐁
dt

= −𝐁̇ (1.23)

connecting the curl of the electric field with the temporal change of the magnetic
field. We take the time derivative of Eq. (1.14) and insert the result into Eq. (1.23).

13) Often one uses this relation for determining 𝜉GL. Another possibility arises from the analysis of the
conductivity near the transition temperature (see also Section 4.8).
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Then we obtain curl𝐄 = 𝜇0𝜆
2
L curl 𝐣̇s and, except for an integration constant,

𝐄 = 𝜇0𝜆
2
L 𝐣̇s (1.24)

This is the first London equation. For a temporally constant supercurrent, the
right-hand side of Eq. (1.24) is zero. Hence, we obtain current flow without an
electric field and zero resistance.
Equation (1.24) also indicates that in the presence of an electric field the super-

current density continues to increase with time. For a superconductor this seems
reasonable, since the superconducting charge carriers are accelerated more and
more due to the electric field. On the other hand, the supercurrent density cannot
increase up to infinity. Therefore, additional energy arguments are needed to find
the maximum supercurrent density that can be reached. In Section 5.1, we will
present these arguments using the Ginzburg–Landau theory.
We could have derived the first London equation also from classical arguments,

if we note that for current flow without resistance the superconducting charge
carriers cannot experience (inelastic) collision processes.Then, in the presence of
an electric field, we have the force equation m𝐯̇ = q𝐄. We use 𝐣̇ = qns𝐯 and find
𝐄 = (m∕q2ns) 𝐣̇s. The latter equation can be turned into Eq. (1.24) using the defi-
nition (1.10) of the London penetration depth.
This argument indicates at least formally that the zero value of the resistance

is also a consequence of the macroscopic wave function. However, we may also
ask what processes lead to a finite resistance or cause the decay of a permanent
current. For simplicity, we restrict our discussion to direct currents in a type-
I superconductor, that is, we do not consider dissipative effects caused by vor-
tex motion or by the acceleration of unpaired electrons in an alternating electric
field.
We look at the strongly simplified situation shown in Figure 1.17. We assume

the geometry of a metallic ring containing only four electrons. The electrons can
move only along the ring. In this figure, the ring is shown after being cut and
straightened into a piece of wire, the two ends of which are identical. Such a case
is also referred to as a periodic boundary condition. An electron leaving the ring,
say, on the left end, reappears again on the right end.
In the normal conducting state (T >Tc), the circulating current is assumed to

be zero. However, this does not mean that the electrons are completely at rest.
Because of the Pauli principle, the electronsmust occupy different quantum states.
If we neglect the electron spin, the four electronsmust have different wave vectors
and, hence, different velocities. We have marked these velocities by arrows with
different lengths and different directions, which are attached to the electrons. As
required by quantum mechanics, the wave numbers and, hence, the velocities of
the electrons can change only in integer steps.This is indicated by the length of the
arrows. If no net circulating current is assumed to flow, the velocities of the four
electrons must cancel each other exactly. This is the situation shown in the upper
left of the figure. On the other hand, if we have generated a circulating current, the
electrons are moving predominantly in one direction.This is shown in the second
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Figure 1.17 Generation of the supercurrent. Four electrons in a wire bent to a ring are
shown.

picture from the top. Here, we have added one unit to the velocity of each electron,
and the total current is indicated by the arrow of the sum.14)
If we leave the system alone, the electrons will change their quantum state very

rapidly by means of collision processes toward the state with the smallest possible
total energy. Hence, the circulating current will have decayed after a short time.
In the figure a few collision processes are indicated, where we have marked the
scattered electrons by a dashed line. Here, the total current can change in steps of
one unit.
The macroscopic wave function is distinguished by the fact that the centers of

mass of all Cooper pairs have the same momentum and the same wave vector. For
illustration, on the right-hand side of Figure 1.17, the four electrons are combined
into two Cooper pairs and are marked by dark or light gray color. We note that in
the two upper pictures of the right-hand side, both pairs have the same velocity
of the center of mass, respectively. For current I = 0, this velocity is zero. In the
secondpicture the velocity vector of both pairs points to the right by one unit.Now
a number of collision processes, resulting in the decay of the current at T >Tc,
do not function anymore, since they violate the condition that the velocity of the
centers ofmass of both pairsmust be the same. During a transition of one electron,
the other electrons must adjust their quantum states in such a way that all pairs
continue to have the same velocity of the centers of mass. The total current must
change in steps of at least two units, until the state I = 0 is reached again. Similarly,

14) Here, we ignore the negative sign of the electron charge. Otherwise, we would have to reverse the
direction of the current and velocity vectors.
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Figure 1.18 Generation of the supercurrent: current transport and decay of the permanent
current illustrated with the Fermi sphere.

forN pairs, the total currentmust change in steps ofN units. ForN = 2 such events
clearly would not be very unlikely. However, for 1020 electrons or Cooper pairs,
the probability of such simultaneous processes would be extremely small, and the
current does not decay.
We can illustrate the above arguments also more realistically with the Fermi

sphere. In Figure 1.18 two dimensions kx and ky of k-space are shown.The allowed
discrete values of k are indicated by the individual dots (which are shown at a
strongly exaggerated distance). At least for T = 0, the electrons occupy the states
with the lowest energy, yielding the Fermi sphere for 3D and correspondingly a cir-
cle in the (kx, ky) plane. For zero net current flow, this sphere is centered around
the origin of the coordinate system. If a net current is flowing in the x-direction,
the Fermi sphere is slightly displaced parallel to kx, since a net motion in the direc-
tion of the current must remain, if we sum over all electrons.15) In Figure 1.18, this
displacement is highly exaggerated.
In the normal conducting state with the observation of the Pauli principle, elec-

trons can scatter into lower energy states essentially independently of each other
(as indicated by the arrows), and the Fermi sphere rapidly relaxes back to the ori-
gin, that is, the circulating current decays quickly. However, in the superconduct-
ing state, the pairs are correlated with respect to the center of the Fermi sphere.
They can only scatter around the sphere, without affecting the center of the sphere.
Hence, the circulating current does not decay and we have a permanent current.
The simplest possibility for slowing down the circulating current in a ring

containing many electrons arises by briefly eliminating the pair correlation in
the smallest possible volume element of the ring by means of a fluctuation. This
volume element would briefly be normal conducting, and the circulating current
could decrease easily. We wish to estimate roughly the probability of such a
process.
The length scale over which the superconductivity can be suppressed is the

Ginzburg–Landau coherence length 𝜉GL, which we have discussed already in con-
junction with the vortices in type-II superconductors. The smallest volume that

15) Again we ignore the negative sign of the electron charge.
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can briefly become normal is then given by the cross-section of thewiremultiplied
by 𝜉GL, if the wire diameter does not exceed 𝜉GL. We assume that the volume to
becomenormal isVc = ξ3GL.HowmanyCooper pairs are contained in this volume?
The electron density is taken as n, andwe assume that the fraction a of all electrons
are paired. Then within the volume ξ3GL, there are Nc = anξ3GL∕2 pairs. According
to the Bardeen–Cooper–Schrieffer (BCS) theory, the fraction a of electrons effec-
tively participating in Cooper pairing is approximately given byΔ0/EF, where EF is
the Fermi energy andΔ0 the energy gap. For metallic superconductors such as Nb
or Pb, we have Δ0 ≈ 1meV and EF ≈ 1 eV. Hence, we find for the fraction a≈ 10−3.
If we take n= 1023 cm−3 and 𝜉GL ≈ 100 nm, we obtain about 105 Cooper pairs to
be transferred into the normal state by means of a fluctuation. The condensation
energy per pair is also about 1meV. Hence, the energy cost Ec of the above process
is at least about 102 eV. From thermodynamics we know that the probability for
this process is proportional to the Boltzmann factor exp(−Ec/kBT). For a temper-
ature of 1K, we have kBT ≈ 0.08meV, and for the ratio Ec/kBT we obtain about
106. Hence, the Boltzmann factor is only about exp(−106).
Here, we note that an exact analysis of the fluctuation effects leading to the

appearance of a finite resistance in a thin superconducting wire is much more
complicated than just described [28, 29]. However, the exponential dependence
on the condensation energy within a coherence volume remains.This dependence
has been tested by measurements of the resistance of very thin single-crystalline
tin wires (so-called whiskers) near Tc = 3.7 K [30, 31].Within 1mK, the resistance
dropped exponentially by 6 orders of magnitude. If we extrapolate this behavior
to lower temperatures, we find the probability for a brief breakdown of super-
conductivity so extremely small that with good reason we can speak of the zero
resistance.
For high-temperature superconductors, the condensation energy per pair is

about 1 order of magnitude larger than for Nb or Pb. However, the volume V c
is much smaller. Here, the Ginzburg–Landau coherence length is anisotropic.
In two spatial directions it is about 1–2 nm, and in the third direction it is
smaller than 0.3 nm. Here, at low temperatures, the volume V c may contain
less than 10 Cooper pairs. In this case at T = 1K, the Boltzmann factor is about
exp(−102).
Indeed, in high-temperature superconductors, fluctuation effects often are not

negligible and can lead to a number of interesting phenomena, in particular in
conjunction with vortices. We will discuss this in more detail in Chapters 4 and 5.

1.5
Quantum Interference

How can we directly demonstrate the coherent matter wave in a superconductor?
In optics this is elegantly done bymeans of diffraction experiments or interference.
Everybody is familiar with the interference stripes produced, for example, by laser
light passing through a double slit and then focused on a screen.
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Figure 1.19 The optical Sagnac interferometer.

In Figure 1.19, a special optical interferometer, the Sagnac interferometer, is
shown schematically. A laser beam is split in two by means of a semi-transparent
mirror in such a way that the two partial waves travel along a “circular” path
in opposite directions due to three additional mirrors. If two partial waves with
the same phase reach the detector, the waves interfere constructively, and a large
signal can be observed. It is the sensitivity with respect to a rotation of the mea-
surement setup that makes the Sagnac interferometer so interesting. If the setup
rotates, say, clockwise in the diagram, the mirrors move against the beam com-
ing from the opposite direction. However, the mirrors move away from the beam
coming along the same direction. Hence, the beam running clockwise must travel
a larger distance before it hits the detector than the beam running counterclock-
wise. As a result, a phase difference between the partial waves appears at the
detector. The detected signal is smaller. With faster and faster rotational veloc-
ity of the measurement setup, the signal is expected to vary periodically between
amaximum and aminimum value. Because of this dependence of the detector sig-
nal upon the rotational velocity of the setup, one canuse the Sagnac interferometer
as a gyroscope for detecting rotational motion.
In principle, wave nature can be demonstrated also using temporal interference.

Imagine that twowaves having different frequencies interfere with each other, and
that we observe the total amplitude of the two waves at a specific location, say, at
x= 0. Each time when both waves are exactly in phase, the total amplitude of the
wave is equal to the sum of the amplitudes of both partial waves. If both waves are
exactly in the opposite phase, the total amplitude is equal to the difference of the
amplitudes of the two partial waves. Hence, we observe that the amplitude of the
total wave oscillates periodically with time, where the frequency is given by the
difference of the oscillation frequencies of both partial waves.
Can similar phenomena occur in superconductors based on the coherentmatter

wave?The answer is yes: both phenomena, spatial and temporal interferences, can
be observed and are utilized in many applications. For a more exact treatment, we
must go a little further and first discuss the Josephson effect.
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Figure 1.20 Sandwich geometry of two superconductors separated from each other by a
thin barrier.

1.5.1
Josephson Currents

Imagine two superconductors placed on top of each other in the form of a
sandwich structure. This arrangement is shown schematically in Figure 1.20.
Between the two superconductors we imagine a non-superconducting barrier,
for instance, an electrical insulator. If the barrier is sufficiently thin, about a few
nanometers, electrons can pass from one superconductor to the other, although a
non-conducting layer exists between the two metals. The reason is the quantum
mechanical tunneling effect. The wave function, describing the probability of
finding an electron, leaks out from the metallic region. If a second metal is
brought into this zone, the electron can tunnel from metal 1 to metal 2, and
a current can flow across this sandwich structure. This tunneling process is a
highly fundamental phenomenon in quantum mechanics. For instance, it plays
an important role in the alpha decay of atomic nuclei.
Due to the tunneling electrons or Cooper pairs, the two superconductors are

coupled to each other, and a weak supercurrent, the Josephson current, can flow
across the barrier. This current was theoretically predicted for the first time in
1962 by Josephson [32]. The Josephson current displays a number of surprising
properties, which are closely connected with the phase of the macroscopic wave
function in the superconducting state. In 1973, Josephson received theNobel Prize
for his discovery.
We will see that the Josephson current is proportional to the sine of the phase

difference 𝜑1 −𝜑2 of the macroscopic wave function of the two superconductors.
More exactly, we have

Ic = Ic sin 𝛾 (1.25)

where 𝛾 is the gauge-invariant phase difference

𝛾 = 𝜑2 − 𝜑1 −
2π
Φ0 ∫

2

1
Adl (1.26)

Here, the path integral of the vector potential is taken from superconductor 1 to
superconductor 2 across the barrier.
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Equation (1.25) is the first Josephson equation.The constant Ic is denoted as the
critical current. Divided by the contact area, we have the critical current density
jc. At low temperatures, it typically falls in the range 102–104 A/cm2.
If a direct voltage U can be applied to the sandwich, as shown in Figure 1.20,

the gauge-invariant phase difference increases as a function of time, as will be dis-
cussed in more detail below. In this case, we observe a high-frequency alternating
current, the frequency of which is given by

fJ =
U
Φ0

= U 2e
h

(1.27)

The alternating Josephson current represents the temporal interference of the
wave functions of the two superconductors.The exact relation between the gauge-
invariant phase difference 𝛾 and the applied voltage U is described by the second
Josephson equation

𝛾̇ = 2π
Φ0

U (1.28)

Below, the two Josephson equations will be derived in detail.
The frequency of the alternating Josephson current is proportional to the

applied direct voltage, and the proportionality constant is the inverse of the
flux quantum Φ0. One finds a value of about 483.6GHz/mV of applied voltage.
This high value, and the fact that the oscillation frequency can be tuned using
the applied voltage, makes Josephson junctions interesting as oscillators at
frequencies in the high gigahertz range or even in the terahertz range. On the
other hand, the fact that Eq. (1.27) connects voltage and frequency through
the two fundamental constants h and e allows us to define voltage using the
frequency of the alternating Josephson current and to utilize Josephson junctions
as voltage standards. In Chapters 6 and 7, we will return to the many applications
of Josephson junctions.
Now we look more exactly at the properties of the Josephson junction in terms

of the macroscopic wave function. Similar to the case of individual electrons dis-
cussed earlier, we can imagine here also that the coherent matter wave is leaking
out of the superconductor and in this way couples both superconducting parts.
Because of the great significance of the Josephson effect, we will derive the

underlying “Josephson equations” in two different ways.
(1) The first derivation goes back to Feynman et al. [33]. One considers

two weakly coupled quantum mechanical systems and solves the Schrödinger
equation for this problem by means of an approximation. The magnetic field is
neglected at this stage.The two separate systemswill be described by the twowave
functionsΨ1 andΨ2. According to the time-dependent Schrödinger equation, for
the temporal change of both wave functions, we have

∂Ψ1
∂t

= −i
ℏ

E1Ψ1;
∂Ψ2
∂t

= −i
ℏ

E2Ψ2 (1.29)

If there is weak coupling between the systems, the temporal change of Ψ1 will
also be affected by Ψ2 and vice versa. This situation can be taken into account by
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introducing an additional coupling into Eq. (1.29):

∂Ψ1
∂t

= −i
ℏ
(E1Ψ1 + KΨ2) (1.30a)

∂Ψ2
∂t

= −i
ℏ
(E2Ψ2 + KΨ1) (1.30b)

In our case, the coupling means that Cooper pairs can be exchanged between
the superconductors 1 and 2. The coupling strength is symmetric and is fixed by
the constant K .
Compared to other quantum mechanical systems with two states (for instance,

the H+
2 molecule), a peculiarity of the two weakly coupled superconductors is the

fact that Ψ1 and Ψ2 describe macroscopic states occupied by a large number of
particles.Thenwe can interpret the square of the amplitude in terms of the particle
density ns of the Cooper pairs. Hence, we can write

Ψ1 =
√

ns1ei𝜑1 ; Ψ2 =
√

ns2 ei𝜑2 (1.31)

Here, 𝜑1 and 𝜑2 are the phases of the wave functions Ψ1 and Ψ2, respectively.
Inserting these wave functions into Eqs. (1.30a) and (1.30b), we obtain

ṅs1

2
√

ns1
ei𝜑1 + i

√
ns1 ei𝜑1 × 𝜑̇1 = − i

ℏ

{
E1
√

ns1 ei𝜑1 + K
√

ns2 ei𝜑2
}

(1.32a)

ṅs2

2
√

ns2
ei𝜑2 + i

√
ns2 ei𝜑2 × 𝜑̇2 = − i

ℏ

{
E2
√

ns2 ei𝜑2 + K
√

ns1 ei𝜑1
}

(1.32b)

By separating the real and the imaginary parts, we find

1
2

ṅs1√
ns1

= K
ℏ

√
ns2 sin(𝜑2 − 𝜑1) (1.33a)

1
2

ṅs2√
ns2

= K
ℏ

√
ns1 sin(𝜑1 − 𝜑2) (1.33b)

i
√

ns1𝜑̇1 = − i
ℏ
{E1

√
ns1 + K

√
ns2 cos(𝜑2 − 𝜑1)} (1.34a)

i
√

ns2𝜑̇2 = − i
ℏ
{E2

√
ns2 + K

√
ns1 cos(𝜑1 − 𝜑2)} (1.34b)

If we also take into account that, because of the exchange of Cooper pairs
between 1 and 2, we must always have ṅs1 = −ṅs2, and if for simplicity we assume
two identical superconductors (i.e., ns1 = ns2), from Eqs. (1.33a) and (1.33b) we
obtain the differential equation

ṅs1 =
2K
ℏ

ns1 sin(𝜑2 − 𝜑1) = −ṅs2 (1.35)

The temporal change of the particle density in 1multiplied with the volumeV of
1 yields the change of the particle number and, hence, the particle current across



50 1 Fundamental Properties of Superconductors

the junction. The electric current Is is obtained by multiplication of the particle
current with the charge 2e of each individual particle. Then we find

Is = Ic sin(𝜑2 − 𝜑1) (1.36)

with

Ic =
2K × 2e

ℏ
V ns =

4πK
Φ0

V ns (1.37)

This is the first Josephson equation, if we set the vector potentialA= 0.We recall
that we had neglected magnetic fields. Therefore, this step is justified. Turning
from ns to the current within the junction, we must remember that both super-
conductors are connected to a current source, which serves to keep ns constant
within the superconductors by supplying or accepting the charges.
From Eqs. (1.34a) and (1.34b) one obtains a differential equation for the tempo-

ral change of the phase difference. With ns1 = ns2 and E2 −E1 = 2eU , we have

d
dt

(𝜑2 − 𝜑1) =
2eU
ℏ

= 2π
Φ0

U (1.38)

This is the second Josephson equation for the caseA= 0.We see that, for a tem-
porally constant voltage U = constant, the phase difference increases linearly with
time:

𝜑2 − 𝜑1 =
2π
Φ0

Ut + 𝜑(t = 0) (1.39)

However, this means that according to the first Josephson equation an alter-
nating current appears in the junction, the frequency f of which is given by Eq.
(1.27).
(2) The second derivation of the Josephson equations that we want to discuss

in part goes back to Landau and Lifschitz [34]. It is based only on very general
symmetry and invariance principles and thereby emphasizes the wide range of
validity of the Josephson effect.
We start by considering qualitatively how supercurrent density and phase are

connected to each other within a homogeneous superconducting wire.16) The cur-
rent is assumed to flow in the z-direction. It is convenient towrite the supercurrent
density as js,z = 2ensvz. We have used this relation already for the derivation of the
fluxoid quantization. If we eliminate vz by using the canonical momentum, Eq.
(1.5), we obtain

js,z =
q
m

ns(pcan,z − qAz)

or by using 𝐩can = ℏ𝐤

js,z =
q
m

ns(ℏkz − qAz)

16) These qualitative arguments treat the quantummechanics only in a rough way, but yield the correct
result.



1.5 Quantum Interference 51

Weconsider amatterwave of the formΨ=Ψ0 ei𝜑 =Ψ0 eik⋅x and, instead of kz, we
write the expression 𝜑′ ≡ d𝜑/dz (the derivative of the phase 𝜑= k⋅x with respect
to z yields kz). Then we obtain

js,z =
q
m

ns(ℏ𝜑′ − qAz) (1.40)

Now we define

𝛾(z) = 𝜑(z) −
q
ℏ∫

z

0
Az dz (1.41)

yielding

js,z =
qℏ
m

ns × 𝛾 ′ (1.42)

What happens if our superconducting wire has a weakened location, where the
Cooper pair density is strongly reduced? This geometry is shown schematically
in Figure 1.21. The current passing through the wire must have the same value
everywhere. If we assume a constant supercurrent density over the cross-section
of the wire, in Eq. (1.42) the product ns𝛾

′ must have the same value everywhere.
However, if ns is strongly reduced at the weakened location, there 𝛾 ′ must bemuch
larger than in the remainder of the wire. If at the weakened location 𝛾 ′ displays
a sharp peak, 𝛾(z) changes there very rapidly from a value 𝛾1 to a much larger
value 𝛾2.

1.0

Is Is

0.5

0.0

−0.5

−1.0

−10 −5 0 5 10z

ns(z)

γ ′(z)

γ (z)

Figure 1.21 Derivation of the Josephson
equations. We consider a thin supercon-
ducting wire with a weakened location at
z = 0, at which the Cooper pair density ns
is strongly reduced. Due to current conser-
vation, we have ns(z)𝛾

′(z)= constant, lead-
ing to a peak in 𝛾 ′(z) and to a step in 𝛾 . For

illustration we have used the following “test
function”: ns(z)= 1/𝛾 ′(z)= 1/[1.001− tanh2(x)],
constant= 0.001. For 𝛾(z) one finds
𝛾(z)= tanh(z)+ 0.001z. At the weakened
location, 𝛾(z) changes very rapidly from −1
to +1.
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Using Eq. (1.41), we can write the jump of the phase at the barrier as

𝛾 = 𝛾(z2) − 𝛾(z1) = 𝜑(z2) − 𝜑(z1) −
q
ℏ∫

z2

z1
Az dz (1.43)

where z1 denotes a coordinate in superconductor 1 in front of the barrier and z2
a coordinate in superconductor 2 behind the barrier. Equation (1.43) has exactly
the same form as Eq. (1.26).
If we specify the spatial dependence ns(z), the supercurrent across the barrier is

a function of the jump 𝛾 of the phase, that is, Is = Is(𝛾). However, a change of the
phase difference of 2π should yield the same wave function and, hence, the same
value of the supercurrent across the barrier. Therefore, we can expand Is as a sum
of sine and cosine terms (a Fourier series):

Is(𝛾) =
∞∑

n=0
Icn sin(n𝛾) +

∞∑
n=0

Ĩcn cos(n𝛾) (1.44)

Here, Icn and Ĩcn are the expansion coefficients of the function Is(𝛾). We note that
microscopic details such as the structure of the barrier or the temperature depen-
dence of the Cooper pair density are contained in these expansion coefficients.
However, the periodicity of Is(𝛾) is independent of this.
Now we utilize the principle of time inversion symmetry. Many fundamental

phenomena in Nature are reversible. If we record such a phenomenon with a
camera and then run the motion picture backward, we see again a process that is
physically possible.17) Nowwe assume that this principle also applies to the Joseph-
son current. If the time is reversed, the current flows backward, that is, we have a
current −Is. The macroscopic wave functions oscillate according to exp(−i𝜔t). If
the time is reversed here also, we see that also the sign of the phase of the wave
function must be reversed. So if we request that the Josephson current be invari-
ant under time reversal, we have the condition Is(𝛾)=−Is(−𝛾). This eliminates all
the cosine terms in Eq. (1.44).
Under time inversion symmetry, the supercurrent across the barrier is described

by

Is(𝛾) =
∞∑

n=0
Icn sin(n𝛾) (1.45)

Very often, but not necessarily, one finds that this series converges very rapidly,
that is, the expansion coefficients become smaller very quickly.Then the series can
be restricted to the first term, and we obtain the first Josephson equation.
At this stage, we note that there are situations for which the first expansion

coefficient Ic1 vanishes, for example. In this case, the relation between the super-
current and the phase difference 𝛾 has period π instead of 2π.

17) This is not valid for irreversible processes. A full glass of water falling to the ground breaks into
many pieces, and the water spreads over the floor. The inverse process, where the water and the
broken pieces jump upon the table and reassemble to an unbroken glass filled with water, only
exists in the motion picture.
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To obtain the second Josephson equation, we take the time derivative of Eq.
(1.43), and we obtain

𝛾̇ = 𝜑̇(z2) − 𝜑̇(z1) −
q
ℏ∫

z2

z1
Ȧz dz (1.46)

According to the laws of electrodynamics, the integral over the time derivative
of the vector potential yields exactly the voltage induced across the barrier
by a temporally changing magnetic field. The time derivative of the differ-
ence 𝜑(z2)−𝜑(z1), with Ψ ∝ exp(−i𝜔t) = exp(−iEt∕ℏ), yields the difference
[E(z2) − E(z1)]∕ℏ between the two superconductors on both sides of the barrier.
We can write this difference as q U21, with the voltage difference U21. So we
have

𝛾̇ =
q
ℏ
(U21 + Uind) =

q
ℏ

Utotal (1.47)

With q= 2e, this yields the second Josephson equation (1.28).
The second derivation of the Josephson equations is very general. It was

assumed that there exists a macroscopic wave function with a well-defined phase
𝜑, and that the system satisfies time inversion symmetry. Equations 1.40–1.47
are also gauge-invariant.
The gauge invariance represents a highly fundamental principle. In the force and

field equations of electrodynamics, only the electric and magnetic fields appear,
not the corresponding potentials, the vector potential A and the scalar potential
Φ. From the latter, one obtains the (negative) electric field by forming the gra-
dient. We have mentioned already that curlA=B. However, the magnetic field
is source-free, that is, we have divB= 0. Therefore, a vector V(x,y,z,t), obtained
from the gradient of a function 𝜒(x, y, z, t), can be added to A. This corresponds
to a different scaling of A. The curl of V always vanishes, and, hence, the mag-
netic field remains unaffected. However, in order also to keep the electric field
unchanged during this transformation, at the same time we must subtract the
quantity 𝜒(x,y,z,t) from the scalar potential. Finally, in the Schrödinger equation,
the phase 𝜑 of the wave function must be rescaled to 𝜑+ (2π/Φ0)𝜒 . The gauge
invariance of Eqs. (1.40–1.47) can be shown by explicitly inserting these relations.
Often, equations showing gauge invariance are of fundamental importance in

physics and cannot be affected easily bymicroscopic details. Hence, we can expect
that the Josephson equations are generally valid in the case ofmany different types
of barriers and superconductors.
In Figure 1.22, some types of junctions are shown schematically. For the

superconductor–insulator–superconductor (SIS) junction (Figure 1.22a), the
insulating barrier must be only 1–2 nm thick. The superconductor–normal
conductor–superconductor (SNS) junction (Figure 1.22b) can function with
a much larger thickness of the normal conductor, simply because the Cooper
pairs can penetrate much deeper into a normal conducting metal than into
an oxide layer. Here, in the normal metal, the decay length of the Cooper pair
concentration depends among other things on the electron mean free path. For
very large values of the electron mean free path (small amount of perturbations),
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Figure 1.22 Schematics of the different
possibilities for producing a weak cou-
pling between two superconductors: (a) SIS
junction with an oxide layer as a barrier;
(b) SNS junction with a normal conducting

barrier; (c) point contact; (d) microbridge;
(e) YBa2Cu3O7 grain boundary junction;
and (f ) intrinsic Josephson junction in
Bi2Sr2CaCu2O8.

normal conducting layers with a thickness up to a few hundred nanometers can
be used. An important difference between the oxide and the normal conductor
junctions is the value of the resistance per square (normal resistance/area of
the barrier). For the oxide junctions, the value of the resistance per square is
typically 10−4–10−3 Ω cm2. However, for the SNS junctions, this value is about
10−8 Ω cm2 or below. In addition to the SIS and SNS junctions, one often also
uses junctions with a more complicated structure of the barrier, for instance, the
so-called SINIS junctions where the barrier is formed by two insulators and one
normal conducting layer.
The point contacts (Figure 1.22c) are particularly simple. In this case, a metal tip

is pressed against a surface.The cross-section of the bridge depends on the applied
pressure. In this way, the desired junction properties can be produced easily and
can be adjusted if necessary. The microbridge (Figure 1.22d) only consists of a
narrow constriction that limits the exchange of Cooper pairs because of its very
small cross-section. Here, it is necessary to fabricate reproducibly bridges with
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a width of only 1 μm or smaller, which requires advanced structuring techniques
such as electron beam lithography.
For the high-temperature superconductors, one can use grain boundaries as

weak coupling regions because of the small values of the coherence length [35,
36]. One can deposit a thin film, say, of YBa2Cu3O7 on a “bicrystal substrate,” con-
sisting of two single-crystalline parts joined together at a specific angle. The grain
boundary of the substrate is then transferred also into the deposited film, which
otherwise is grown single-crystalline (epitaxially, Figure 1.22e).Well-defined grain
boundaries can also be produced at steps in the substrate or at the edges of buffer
layers epitaxially deposited on a substrate.The strength of the Josephson coupling
can be varied over a large range by means of the grain boundary angle.
In some high-temperature superconductors such as, for instance,

Bi2Sr2CaCu2O8, even intrinsic Josephson junctions exist simply because of
their crystal structure (Figure 1.22f ). Here, the superconductivity is restricted
only to the copper oxide layers with about 0.3 nm thickness. Between these layers,
there are electrically insulating bismuth oxide and strontium oxide planes. Hence,
such materials form stacks of SIS Josephson junctions, where each junction has
a thickness of only 1.5 nm, the distance between two neighboring copper oxide
layers [37].
These highly different types of Josephson junctions only represent a small

selection of the many possibilities. Each type of junction has its advantages and
disadvantages. Depending on the specific application, quite different types can
be utilized.
At this stage, we are confrontedwith the following question: How similar are the

Josephson effects in these junctions, in particular, with respect to the connection
between the oscillation frequency of the alternating Josephson currents and the
applied voltage? The proportionality factor 1/Φ0, which is also referred to18) as
the “Josephson constant” K J = 2e/h= 483.5979GHz/mV, has been determined for
many different types of Josephson junctions. For example, a Josephson junction
made of indium with its weak location realized by a constriction (microbridge)
has been compared directly with a Josephson junction made of niobium where
the barrier consisted of a thin gold layer [38]. The Josephson constants measured
for both junctions were equal within an uncertainty of only 2× 10−16 or less. In
the meantime, this accuracy could be increased even to about 10−19. Therefore,
Josephson junctions are now applied for representing the voltage standard [39].
How can we demonstrate alternating Josephson currents experimentally? A

very direct method is the observation of the electromagnetic radiation generated
by the oscillating Josephson currents in the frequency range of microwaves. We
want to estimate the order of magnitude of the microwave power emitted from
the junction.
We assume a voltage of 100 μV applied to the junction, corresponding to an

emitted frequency of about 48GHz. The critical current Ic of the junction is

18) The value given here was defined internationally in 1990 as the Josephson constant K J-90, and there-
fore is exact.
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assumed to be 100 μA.Then the d.c. power applied to the junction is 10−8 W, and
the emitted power is expected to be much smaller than this value.
The difficulty of direct experimental demonstration did not so much arise

because of the small power of this radiation, but, instead, it had to do with the
problem of coupling the high-frequency power from the tiny tunnel junction
into a proper high-frequency waveguide. Therefore, the first confirmation of the
alternating Josephson current came in an indirect way [40]. If such a junction is
placed within the high-frequency field of an oscillating microwave cavity, charac-
teristic, equidistant steps of constant voltage are observed in the voltage–current
characteristic (see Section 6.3). On the voltage axis, their distance ΔU is given by

ΔUS = Φ0 × fHF (1.48)

where f HF is the frequency of the high-frequency field.These “Shapiro steps” result
from the superposition of the alternating Josephson current and the microwave
field. Each time that the frequency of the alternating Josephson current corre-
sponds to an integer multiple of the microwave frequency, the superposition pro-
duces an additional d.c. Josephson current, causing the step structure of the char-
acteristic.
Another indirect confirmation of the existence of an alternating Josephson cur-

rent was found for junctions placed within a small static magnetic field. Here, at
small voltages Us, equidistant steps in the characteristic could be observed with-
out irradiation by an external high-frequency field (see Section 6.4).The sandwich
geometry of a Josephson tunnel junction by itself represents a resonating cavity,
and the structures observed in the characteristic, the “Fiske steps,” correspond to
resonances within the junction. For the proper values of the voltage Us and of the
field B, the Josephson oscillations of the current density exactly fit a cavity mode
of the junction. For such a resonance, the current becomes particularly large.
A more accurate description of the Shapiro and Fiske modes requires a math-

ematical treatment beyond the scope of this first chapter. However, in Chapter 6,
we will return to these structures.
In 1965 Ivar Giaever19) achieved a more direct confirmation of the alternating

Josephson current [41]. As we have seen, the main difficulty with the direct con-
firmation, say, with a typical high-frequency apparatus, arose from the extraction
of power out of the small tunnel junction. Giaever had the idea that a second tun-
nel junction, placed immediately on top of the Josephson junction, would be quite
favorable for such an extraction (Figure 1.23).
Here, the confirmation of the extracted power happens in the second tunnel

junction by means of the change of the characteristic of the tunneling current for
individual electrons, this change being caused by the irradiating high-frequency
field generated in the Josephson junction. In the years prior to this, it had been
shown that a high-frequency field generates a structure in the characteristic of the

19) For his experiments with superconducting tunnel junctions, Giaever received the Nobel Prize in
1973, together with B. D. Josephson and L. Esaki.
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Figure 1.23 Arrangement for the exper-
imental demonstration of the alternating
Josephson current according to Giaever:
layers 1–3 are Sn layers; layers a and b are
oxide layers. The thicknesses of layers a

and b are chosen such that layers 1 and 2
form a Josephson junction, and such that
no Josephson currents are possible between
layers 2 and 3. (From [40].)

single-electron-tunneling current [42]. The electrons can interact with the high-
frequency field by absorbing or emitting photons with energy E = hf HF.
In Section 3.1.3wewill see that, in the absence of a high-frequency field, individ-

ual electrons can tunnel in large numbers between the two superconductors only
after the voltage (Δ1 +Δ2)/e has been reached. Here,Δ1 andΔ2 denote the energy
gaps of the two superconductors, respectively, the magnitudes of which depend
on the material. In other words, during the tunneling process, the electrons must
take up at least the energy eU = (Δ1 +Δ2). Then at the voltage (Δ1 +Δ2)/e, the
voltage–current characteristic displays a sharp step as seen in Figure 1.23.
In a high-frequency field, a tunneling process assisted by photons can set in

already at the voltage Us = (Δ1 +Δ2 − hf HF)/e. If during a tunneling process an
electron absorbs several photons, one obtains a structure in the characteristic with
the specific interval of the voltage Us

ΔUs =
hfHF

e
(1.49)

where h is the Planck’s constant, f HF is the frequency of the high-frequency field,
and e is the elementary charge. Such processes can happen at high photon den-
sities, that is, at high power of the high-frequency field. We note that for single-
electron tunneling, the elementary charge e of single electrons appears.
At the junction 2–3, one observes a typical single-electron characteristic if no

voltage is applied to the junction 1–2 (curve 1 in Figure 1.24). For performing
the key experiment, a small voltage Us is applied to the Josephson junction 1–2.
If the expected high-frequency alternating current appears in this junction, in
the junction 2–3 the well-known structure of the tunneling characteristic should
be observed, because of the close coupling between the two junctions. Giaever,
indeed, could observe this expected effect. Such a characteristic is shown by curve
2 in Figure 1.24. Here a voltage Us of 0.055mV was applied to junction 1–2,
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Figure 1.24 Characteristic of the junction 2–3 from Figure 1.22. Curve 1: no voltage at
junction 1–2. Curve 2: 0.055mV applied to junction 1–2.

acting as the generator of the high-frequency field. The frequency of the alter-
nating Josephson current is f J = 2eUs/h, and the structure of the characteristic
of junction 2–3 should display the voltage steps with the distance between them
ΔUs = hf J/e= 2Us. For the curve shown in Figure 1.24, this yieldsΔU2,3 = 0.11mV,
which was observed by Giaever.
The most direct detection of the alternating Josephson current by coupling the

power into a high-frequency waveguide has been achieved by an American and a
Russian group.The Americans [43] could detect the high-frequency power of the
Josephson junction by placing the junction into a tuned resonating cavity, which
was operated at a resonance frequency of the junction by choosing a proper value
of themagnetic field. However, this still required an extremely high detection sen-
sitivity. The detected power was about 10−11 W, whereas the sensitivity limit for
detection could be increased up to 10−16 W.The Russian group, Yanson et al. [44],
could detect a radiation power of about 10−13 W of a Josephson junction.The rela-
tion f J = 2eUs/h has always been found between the frequency of the alternating
Josephson current and the voltage applied to the junction.The experimental accu-
racy has been increased by the American group sufficiently far that a precision
measurement of 2e/h could be carried out [45].This represented further convinc-
ing proof of the importance of electron pairs in superconductivity.
Today, the techniques for the detection of electromagnetic radiation are

improved to such an extent that the alternating Josephson current can be extracted
without any difficulty up to the 100GHz range. However, there are still problems
at frequencies in the terahertz range, which play an important role, for instance,
in the intrinsic Josephson junctions of high-temperature superconductors.
In the meantime, also this emission was detected. [54, 55]
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In the future, Josephson junctions are expected to play an important role in the
terahertz range. On the one hand, this frequency range is too high to be covered
by semiconductor devices, and on the other, it is too low to be handled by optical
methods.

1.5.2
Quantum Interference in a Magnetic Field

In the alternating Josephson currents, the macroscopic wave function manifests
itself in the form of a temporal interference between the matter waves in the two
superconducting electrodes. What can we say about the spatial interference, say,
analogous to the optical double-slit experiment or to the Sagnac interferometer?
Let us look at the structure shown in Figure 1.25. It consists of a superconduct-

ing ring into which two Josephson junctions are integrated.The ring is located in a
magnetic field oriented perpendicular to the area of the ring. A transport current
I flows along the ring. By measuring the voltage drop across the Josephson junc-
tions, we can determine the maximum supercurrent that can be carried by the
ring. We will see that this maximum supercurrent Is,max oscillates as a function of
the magnetic flux through the ring, similar to the light intensity, or more exactly
the light amplitude, on the screen of the double-slit experiment, and also similar
to the Sagnac interferometer with its dependence on the rotational frequency.
In Section 1.3, we looked at a superconducting ring placed in a magnetic field

and we found that the magnetic flux through the ring appears in multiples of the
flux quantumΦ0. An arbitrary magnetic field Ba could be applied to the ring, gen-
erating an arbitrarymagnetic fluxΦa through the ring. However, in this case, a cir-
culating current J flows along the ring. It also generates a magnetic fluxΦind = LJ ,

Current

1 2 Voltage

(a) (b)

B-Field

I

I

J

Ba

I1

1

1′ 2′
2

I2

Current

Figure 1.25 Generation of spatial interferences of the superconducting wave function in
a ring structure. (a) Schematics of the wave. (b) Notation for the derivation of the quantum
interference.
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such that the total flux amounts to amultiple ofΦ0:Φtot =Φa + LJ .The circulating
current results in a shift of Φa upward or downward to the next integer value of
Φtot/Φ0. Apparently, LJ must then reach a maximum value up to Φ0/2.
This picture is changed because of the insertion of the two Josephson junctions.

At both Josephson junctions, the phase of the superconducting wave function can
jump by amounts 𝛾1 or 𝛾2, which must be taken into account in the integration
of the phase gradient around the ring (integral ∮ 𝐤d𝐱). The jumps of the phase
are connected with the current across the junctions because of the first Josephson
equation (1.25).
Next, we derive the dependence Is,max(Φa) using the notation of Figure 1.25b.

We assume that the width of the Josephson junctions is much smaller than the
diameter of the ring. The current I separates into the currents I1 and I2, flowing
along the two halves of the ring, respectively. Because of current conservation, we
have

I = I1 + I2 (1.50)

The currents I1 and I2 can also be written in terms of the circulating current J
flowing in the ring yielding

I1 =
I
2
+ J; I2 =

I
2
− J (1.51)

The current I1 flows through the Josephson junction 1, and the current I2
through the Josephson junction 2. Therefore, we have

I1 = Ic sin 𝛾1; I2 = Ic sin 𝛾2 (1.52)

Here, for simplicity, we have assumed that the critical currents Ic of the two
Josephson junctions are identical. Therefore, we find

I
2
+ J = Ic sin 𝛾1 (1.53a)

I
2
− J = Ic sin 𝛾2 (1.53b)

Next, we need a relation connecting the gauge-invariant phase differences 𝛾1
and 𝛾2 with the applied magnetic field. We proceed analogously to the derivation
of the quantization of the fluxoid (Eq. (1.11)), but we do not integrate the wave
vector k over the complete ring, as in Eq. (1.7). Instead, we integrate separately
over the lower and upper halves, that is, from 1′ to 2′ or from 2 to 1 in Figure 1.25b.
Then we obtain

∫
2′

1′
𝐤d𝐫 = 𝜇0𝜆

2
L∫

2′

1′
𝐣s d𝐫 +

2π
Φ0 ∫

2′

1′
𝐀d𝐫 (1.54a)

∫
1

2
𝐤d𝐫 = 𝜇0𝜆

2
L∫

1

2
𝐣s d𝐫 +

2π
Φ0 ∫

1

2
𝐀d𝐫 (1.54b)

Here, we have used the definition 1.10 of the London penetration depth and
Φ0 = h/q= h/2e.
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The integral ∫
2′

1′
𝐤d𝐫 yields the difference between the phase 𝜑2 of the wave

function of the lower half of the ring, Ψ2 ∼ exp(ik⋅r)= exp(i𝜑2) at the locations

2′ and 1′, ∫
2′

1′
𝐤d𝐫 = 𝜑2(2′) − 𝜑2(1′). Analogously, one finds ∫

1

2
𝐤d𝐫 = 𝜑1(1) −

𝜑1(2). By adding Eqs. (1.54a) and (1.54b), we obtain

𝜑2(2′) − 𝜑1(2) − [𝜑2(1′) − 𝜑1(1)] = 𝜇0𝜆
2
L

(
∫

2′

1′
𝐣s d𝐫 + ∫

1

2
𝐣s d𝐫

)
+ 2π

Φ0∮C′
𝐀d𝐫

(1.55)

Here, the integral over the curveC′ does not include the barriers of the two Joseph-
son junctions. Otherwise, the integral would run over the complete ring, and by
using Stokes’ theorem we could turn it into the magnetic flux through the ring.
However, we can accomplish this by adding the integrals over the corresponding
distances on both sides of Eq. (1.55). Then we find

∮C′
𝐀d𝐫 + ∫

2

2′
𝐀d𝐫 + ∫

1′

1
𝐀r d𝐫 = ∮C

𝐀d𝐫 = ∫F
𝐁d𝐟 = Φ (1.56)

On the left-hand side of Eq. (1.55), the term

𝜑2(2′) − 𝜑1(2) +
2π
Φ0 ∫

2

2′
𝐀d𝐫

yields the gauge-invariant phase difference 𝛾2 across the Josephson junction 2.
Analogously, the expression

𝜑2(1′) − 𝜑1(1) −
2π
Φ0 ∫

1′

1
𝐀d𝐫

yields the gauge-invariant phase difference 𝛾1 across the Josephson junction 1. In
this way, we find

𝛾2 − 𝛾1 = 𝜇0𝜆
2
L

(
∫

2′

1′
𝐣s d𝐫 + ∫

1

2
𝐣s d𝐫

)
+ 2π

Φ0
Φ (1.57)

Similar to the case of a massive circular ring, the magnetic flux Φ is given by
the sum of the applied flux Φa and the self-field of the circulating currents J:
Φ=Φa + LJ . The contributions of the current densities are proportional to the
circulating current J and can be included in the term LJ .20) Finally, we obtain the
relation we had been looking for

𝛾2 − 𝛾1 =
2π
Φ0

Φ = 2π
Φ0

(Φa + LJ) (1.58)

20) Therefore, the inductivity of the ring is slightly increased.This contribution is referred to as “kinetic
inductance” Lkin, which must be added to the inductance L given by the geometry. Hence, we have
Ltot = L+ Lkin. However, since mostly the contribution Lkin is very small, we will not distinguish any
further between Ltot and L.
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From Eqs. (1.53a), (1.53b) and (1.58), we can calculate the maximum supercur-
rent along the ring as a function of the applied magnetic field or of the flux.
Let us start by assuming that we can neglect the contribution of the term LJ

to the magnetic flux. The circulating current J clearly cannot become larger than
the critical current Ic of the Josephson junctions. Hence, the flux generated by the
term LJ is smaller than LIc. We assume also that this flux is much smaller than
half a flux quantum, yielding the condition 2LIc∕Φ0 ≪ 1. The quantity 2LIc/Φ0 is
referred to as the inductance parameter 𝛽L,

𝛽L =
2LIc
Φ0

(1.59)

If we neglect the magnetic flux generated by the circulating current, we have
Φ=Φa. Using Eq. (1.58), we eliminate 𝛾2 from Eqs. (1.53a) and (1.53b). Then, by
adding Eqs. (1.53a) and (1.53b), we obtain

I = Ic
[
sin 𝛾1 + sin

(
2π

Φa
Φ0

+ 𝛾1

)]
(1.60)

Now it is advantageous to use the variable 𝛿 = 𝛾1 +π(Φa/Φ0) instead of 𝛾1.Then
Eq. (1.60) can be changed into

I = Ic
[
sin

(
𝛿 − π

Φa
Φ0

)
+ sin

(
𝛿 + π

Φa
Φ0

)]
(1.61)

By using the trigonometric identity for the summation of sines, we obtain the
expression

I = 2Ic sin 𝛿 cos
(
π
Φa
Φ0

)
(1.62)

If we specify the flux Φa and the current I, the variable 𝛿 will adjust itself such
that Eq. (1.62) is satisfied. For increasing current, this is possible at most up to the
point where sin 𝛿 becomes equal to +1 or −1, depending on the current direction
and on the sign of the cosine factor. Hence, the maximum supercurrent that can
flow through this circular structure is given by

Is,max = 2Ic
|||||cos

(
π
Φa
Φ0

)||||| (1.63)

The quantity Is,max reaches a maximum if the flux corresponds to an integer
multiple of a flux quantum. Then the cosine factor is equal to 1, and we obtain
Is,max = 2Ic. This is the maximum supercurrent that can be carried by the parallel
configuration of the two Josephson junctions. In this case, we have sin 𝛾1 = sin
𝛾2 = 1. In this case, the circulating current J , obtained as

J =
Ic
2
(sin 𝛾1 − sin 𝛾2) (1.64)

by subtraction of Eqs. (1.53a) and (1.53b), vanishes. The current Is,max vanishes
each time that Φa reaches the value (n + 1∕2) Φ0 with n= 0, ±1, ±2, … Now the
circulating current attains its maximum value, becoming equal to +Ic or −Ic
depending on the value of n.
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Themaximum supercurrent flowing within the circular structure also oscillates
periodically as a function of the applied magnetic field. Here, the period of the
magnetic flux generated by the field is the magnetic flux quantum.This effect was
first demonstrated experimentally byMercereau and coworkers [46]. It is the anal-
ogy of the diffraction of light by a double slit, and it represents the foundation of
the application of such circular structures as a superconducting quantum inter-
ferometer (SQUID). We note that SQUIDs can measure an applied magnetic field
continuously.
SQUIDs will be discussed in detail in Section 7.6.4. However, at this stage, we

point out already that SQUIDs can resolve changes of the magnetic flux down to
about 10−6Φ0. If the area of the SQUID is about 1mm2, then this corresponds to
field changes ΔB of about 10−6Φ0/mm2 = 10−15 T, which can be detected with a
SQUID.
This value is smaller than the Earth’s magnetic field by 11 orders of magnitude,

and approximately corresponds to the magnetic fields generated at the surface of
the skull by the electric currents within the human brain. SQUIDs belong to the
group of most sensitive detectors by far. Since the measurement of many physical
quantities can be transformed into amagnetic field or fluxmeasurement, SQUIDs
find very wide applications.
Again, we can briefly discuss the analogy with the Sagnac interferometer. If in

a constant external magnetic field the SQUID is rotating around an axis perpen-
dicular to the area of the ring, a phase shift of (2m∕ℏ)2πR2Ω = 4π2R2(2m∕h)Ω
results in the interferometer. Here, Ω is the angular velocity and 2m is the mass
of a Cooper pair. We have assumed a circular SQUID with radius R. Hence,
Is,max oscillates with a period depending on the ratio m/h. Already by 1950,
Fritz London had pointed out the equivalence of a rotating superconductor and
an externally applied magnetic field [47]. A similar rotational effect can also
be observed with other coherent matter waves, for instance, with superfluid
helium [48]. However, since the mass of helium atoms is much larger than that of
Cooper pairs, for helium the sensitivity against rotation is much larger than for
SQUIDs.
Next, we discuss briefly the approximations leading us to Eq. (1.63). We had

assumed that the critical currents Ic of both Josephson junctions are identical.
Without this assumption, we would find that Is,max varies between Ic1 + Ic2 and
|Ic1 − Ic2|, where again the period is one flux quantum. So compared to Eq. (1.63),
there is no qualitative change. Furthermore, the period of the oscillation remains
unchanged if the finite inductance is taken into account. As before, the maximum
value Is,max is again given by Ic1 + Ic2. However, the minimum value of Is,max(Φ)
more andmore approaches themaximumvalue. In Figure 1.26, we show this effect
for three different values of the inductance parameter 𝛽L.
For large values of the inductance parameter 𝛽L, the relative modulation ampli-

tude decreases proportional to 1/𝛽L. In order to see this, we must remember
that for a massive superconducting ring, a shielding current with a maximum
value of J =Φ0/2L was sufficient to supplement the applied flux until it reached
the next integer value of Φ0. If we apply this principle to the SQUID, the
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Figure 1.26 Modulation of the maximum supercurrent of a superconducting quantum
interferometer as a function of the magnetic flux through the ring. The curves are shown
for three different values of the inductance parameter 𝛽L.

circulating current must not exceed the value Φ0/2L. For large values of the
inductance, this circulating current is smaller than Ic, and Is,max is reduced to
the value 2(Ic − J). Therefore, we obtain a relative modulation amplitude of
[2Ic − 2(Ic − J)]/2Ic = J/Ic =Φ0/(2LIc)= 1/𝛽L. Hence, the effect of the quantum
interference decreases with increasing inductance.
If we include thermal fluctuation effects, one can show that the optimum sen-

sitivity of SQUIDs against flux changes is reached for 𝛽L = 1. However, for a given
value of the critical current, this also limits the area of the SQUID ring, since the
inductance increases with increasing circumference of the ring. Hence, on the one
hand, one desires an area as large as possible in order to achieve a large change of
flux with a small change of the magnetic field. On the other hand, this area cannot
be too large, because otherwise the inductance would become too large.This con-
flict has resulted in a number of highly special SQUID geometries, which deviate
strongly from the simple ring structure shown in Figure 1.25.Wewill discuss these
geometries in Section 7.6.4.
Finally, we turn to the effects resulting from the finite size of the Josephson junc-

tions. We will see that also the critical current of the junctions depends on the
magnetic field or on the magnetic flux through the junction, in analogy to the
diffraction of light at a double slit.
Let us look at the geometry of a spatially extended Josephson junction shown

schematically in Figure 1.27. We assume that this junction is penetrated by a
magnetic field along the z-direction parallel to the barrier layer. We look for an
equation describing the dependence of the gauge-invariant phase difference 𝛾 on
the applied magnetic field. For the superconducting ring of Figure 1.25, we saw
that the difference 𝛾2 − 𝛾1 of the two phases of the Josephson junctions, assumed
to represent point junctions, is proportional to the magnetic flux enclosed
between these junctions.
In analogy to the earlier derivation of the relevant equations, we look at the path

along which we want to integrate the wave vector of the superconducting wave
function. In Figure 1.27, this path is shown as the dotted line. Along the x-axis
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Figure 1.27 Geometry of the spatially extended Joseph-
son junction.

the path extends from point x to point x+ dx, where dx denotes an infinitesimally
small distance. Along the y-direction the path extends deeply into the interior of
both superconductors, for which we assume that they are much thicker than the
London penetration depth. In analogy to Eq. (1.57), we find

𝛾(x + dx) − 𝛾(x) = 𝜇0𝜆
2
L

(
∫

2′

1′
𝐣s d𝐫 + ∫

1

2
𝐣s d𝐫

)
+ 2π

Φ0
Φ1 (1.65)

Here,ΦI denotes the total flux enclosed by the integration path. Beyond a layer of
depth 𝜆L, the shielding currents in the superconducting electrodes are exponen-
tially small. Therefore, we can neglect the two integrals taken over the supercur-
rent densities. Furthermore, we assume that the supercurrents and the magnetic
fields vary along the x-direction, but not along the y-direction. Then we write for
the magnetic flux

Φ1 = B teff dx (1.66)

We find the “effective thickness” teff by integrating the magnetic field along the
z-direction. Since the magnetic field decays exponentially in the two supercon-
ductors within a characteristic length 𝜆L, this integration yields

teff = 𝜆L,1 + 𝜆L,2 + tb (1.67)

Here, 𝜆L,1 and 𝜆L,2 are the London penetration depths in the two superconductors,
respectively. They do not have to be identical. The thickness of the barrier layer is
denoted by tb. In general, it is much smaller than 𝜆L,1 and 𝜆L,2. Hence, mostly it
can be neglected.
With these assumptions and notations, fromEq. (1.65) we obtain the differential

equation

𝛾 ′ ≡ d𝛾
dx

= 2π
Φ0

Bteff (1.68)

yielding the connection we had been looking for.
Furthermore, we assume that we can neglect the self-field generated by the

Josephson currents. This assumption represents a condition about the spatial
extension of the junction along the x and y directions. In Section 6.4, we will see
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that it is necessary that the lengths a and b of the edges of the junction do not
exceed the so-called Josephson penetration depth

𝜆J =

√
Φ0

2π𝜇0jcleff
(1.69)

Here, jc is the critical supercurrent density, assumed to be spatially homogeneous,
and the length leff is equal to teff if the superconducting electrodes aremuch thicker
than 𝜆L, as we had assumed. Typically, the Josephson penetration depth is a few
micrometers. However, it can also increase up to themillimeter scale if the critical
supercurrent density is very small.
With the assumptions indicated earlier, themagnetic fieldB is equal to the exter-

nally applied field Ba. Then we can integrate Eq. (1.68) and obtain

𝛾(x) = 𝛾(0) + 2π
Φ0

Bateffx (1.70)

The gauge-invariant phase difference is seen to increase linearly with the
x-coordinate. Inserting this function 𝛾(x) into the first Josephson equation, we
obtain for the spatial dependence of the supercurrent density across the barrier
layer

js(x) = jc sin
[
𝛾 (0) + 2π

Φ0
Bateffx

]
(1.71)

We see that the supercurrent density oscillates along the x-coordinate, that is,
perpendicular to the applied field. Here, the wavelength of the oscillation is deter-
mined by the applied magnetic field.
Now we want to calculate the maximum Josephson current that can flow across

the Josephson junction. For this we integrate Eq. (1.71) over the area of the junc-
tion:

Is = ∫
b

0
dy∫

a

0
dx jc sin

[
𝛾 (0) + 2π

Φ0
Bateffx

]
(1.72a)

Next we assume that the critical supercurrent density jc is spatially homoge-
neous, that is, it is independent of x and y. Then the integration yields

Is = jcb∫
a

0
dx sin

[
𝛾 (0) + 2π

Φ0
Bateffx

]
= −jc b

cos
[
𝛾 (0) + 2π

Φ0
Bateffx

]
2π
Φ0

Bateff

|||||||
a

0

(1.72b)

Inserting the integration limits, we obtain

Is = jcb
cos 𝛾(0) − cos

[
𝛾 (0) + 2π

Φ0
Bateffa

]
2π
Φ0

Bateff
(1.72c)

With the variable 𝛿 = 𝛾(0)+ (π/Φ0)Bateffa and using the relation cos(𝛼 ± 𝛽)= cos
𝛼 cos 𝛽 ∓ sin 𝛼 sin 𝛽, finally we find

Is = jcab sin 𝛿
sin

[
π
Φ0

Bateffa
]

π
Φ0

Bateffa
(1.72d)
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Similar to Eq. (1.62), for a given current I and magnetic field Ba, the quantity 𝛿
will adjust itself in such away that Eq. (1.72d) will be satisfied.This is possible up to
the value for which sin 𝛿 =±1, and finally we obtain themagnetic field dependence
of the critical current of the Josephson junction

Ic(ΦJ) = Ic(0)
|||||||
sin

[
π ΦJ

Φ0

]
π ΦJ

Φ0

||||||| (1.73)

where 𝛷J =Bateffa and Ic(0)= jcab. The quantity 𝛷J corresponds to the magnetic
flux penetrating the Josephson junction.
The function 1.73 is shown in Figure 1.28a. In analogy to the diffraction of light

by a slit, it is referred to as a Fraunhofer pattern. In Figure 1.28b, we see the mea-
sured dependence Ic(Ba) for a Sn–SnO–Sn tunnel junction. With a value of the
London penetration depth of 30 nm, one obtains for teff a value of about 60 nm.
The width of the junction was 250 μm. Hence, we expect zero values of the crit-
ical current within a distance ΔBa =Φ0/(ateff)≈ 1.4G. This agrees well with the
experimental result ΔBa = 1.25G.
If the critical current density jc had been inhomogeneous, that is, depending

upon the spatial coordinates x and y, the function Ic(Ba) would have deviated
strongly from the form of the Fraunhofer pattern. Therefore, the measure-
ment of Ic(Ba) often serves as a simple test of the homogeneity of the barrier
layer.
What about the physics behind the Fraunhofer pattern? For light diffraction by

a slit, minima in the interference stripes appear at locations where the waves pass-
ing through the slit interfere destructively with each other. According to Eq. (1.70),
in the Josephson junction the magnetic field causes an increase in the gauge-
invariant phase difference along the barrier, and the supercurrent density spatially
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Figure 1.28 Dependence of the maximum Josephson current on the magnetic field paral-
lel to the barrier layer. (a) Theoretical curve according to Eq. (1.73). (b) Measured data for a
Sn–SnO–Sn tunnel junction (1 G= 10−4 T). .(From [49].)



68 1 Fundamental Properties of Superconductors

I

B

ΦJ = Φ0/2 ΦJ = Φ0 ΦJ = 3Φ0/2

I I

Figure 1.29 Variation of the Josephson supercurrent density for three different values of
the magnetic flux penetrating through the Josephson junction.

oscillates in the x-directions.21) At the zero values of Ic(Φ), the wavelength of these
oscillations is an integer fraction of the width a of the junction. Hence, equal
amounts of the supercurrent flow across the barrier in both directions, and the
integral over the supercurrent density is zero, independent of the value of the ini-
tial phase 𝛾(0) in Eq. (1.70). However, away from the zero values, the wavelength
of the supercurrent density is incommensurable with the width of the junction.
In this case the supercurrent can attain a finite value, which is adjustable up to
a certain maximum value by means of the phase shift 𝛾(0). This maximum value
becomes smaller for smaller wavelengths of the oscillations of the supercurrent
density, since the supercurrents more andmore average to zero over an increasing
number of periods.
In Figure 1.29, we show this effect for three different spatial distributions of the

current density at values of the flux Φ0/2, Φ0, and 3Φ0/2. For the values Φ0/2 and
3Φ0/2, the phase 𝛾(0) is chosen such that the supercurrent across the junction
reaches a maximum value. For the value Φ0 the supercurrent across the junction
is always zero, independent of 𝛾(0). Furthermore, we note that the fraction of the
Josephson current not flowing in the forward direction across the junction must
flow in a closed loop within the superconducting electrodes. In Figure 1.29, this is
indicated by the “horizontal” arrows.
What happens, finally, if the self-field generated by the Josephson current is

taken into account? If the effect of the self-field is small, such that themagnetic flux
generated by this field is much smaller thanΦ0, the correction of the applied field
remains small. However, if the magnetic flux generated by the supercurrents cir-
culating across the barrier approaches the valueΦ0, vortices can appear with their
axis located within the barrier layer. These vortices are also referred to as Joseph-
son flux quanta or fluxons. They display many interesting properties, which we
will discuss inmore detail in Section 6.4. In particular, based onmoving Josephson
vortices, high-frequency oscillators can be built that are utilized in the application
of Josephson junctions for the detection of microwaves (see Section 7.6.3).

21) This current distribution can be imaged by means of low-temperature scanning electron
microscopy. Details can be found in the literature [50].
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Figure 1.30 Magnetic field dependence of
the maximum supercurrent of a SQUID struc-
ture made of YBa2Cu3O7. The two Joseph-
son junctions are 9 μm wide, such that the
Ic modulation of the individual junctions
appears as the envelope of the SQUID oscil-
lations [51]. (© 2000 AIP.)

Let us go back to the circular structure of Figure 1.25. If here the finite extension
of both Josephson junctions is taken into account, the magnetic field dependence
of their critical currents and the periodic modulation of the maximum supercur-
rent that can pass through the circular structure are superimposed on each other.
Formally, we can account for this, for example, by replacing Ic in Eq. (1.62) by Eq.
(1.72d). For a typical SQUID, the area ateff of both Josephson junctions is smaller
than that of the SQUID itself by several orders ofmagnitude.Themaximumsuper-
current oscillates on a field scale of a few microtesla, whereas the critical current
of the Josephson junctions decreases appreciably only at fields of about 1mT. So
sometimes one can observe thousands of oscillations with nearly the same maxi-
mum amplitude Ic1 + Ic2. However, in some cases, geometric structures have been
investigated in which the SQUID area and the dimension of the Josephson junc-
tions were similar. In Figure 1.30, we show an example obtained with a circular
structure made of YBa2Cu3O7, for which the area ateff of the Josephson junc-
tions was just barely by a factor 10 smaller than the ring area [51]. Here, we can
clearly see the superposition of the SQUID modulation and of the Fraunhofer
pattern.
At the end of this chapter, we now turn to the question: In which form can simi-

lar interference phenomena be observed also for individual electrons?We imagine
that the matter wave describing an individual electron is split into two spatially
separated coherent parts, which subsequently are caused to interfere with each
other. If the area enclosed by the two partial beams is penetrated by the fluxΦ, we
expect a phase difference between the two partial beams. For a flux of h/e, that is,
for twice the value observed in superconductors, the phase difference will be 2π.
Such an experimentwas carried out in 1962 byMöllenstedt and coworkers using

electron waves in a vacuum [51]. By means of a very thin, negatively charged wire
(a so-called biprism), they split an electron beam into two partial beams, which
they guided around a tiny coil (diameter about 20 μm) to the other side. By using
additional biprisms, subsequently both beams were superimposed, yielding a sys-
tem of interference stripes. Indeed, they obtained the well-known interference
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Figure 1.31 Phase change of electron
waves caused by a vector potential. (a) Beam
geometry. (b) Interference pattern during a
change of the magnetic field. The biprisms

are quartz threads covered by a metal. The
coil with 20 μm diameter was fabricated from
tungsten wire. (From [52].)

pattern of the double slit. Next, the system of interference stripes was studied for
different magnetic fields in the coil. A change of the magnetic field affected a shift
of the system of stripes, displaying the expected phase shift of 2π for a flux change
of h/e. In Figure 1.31, we present a schematic of the experiment (a) and a picture
of the system of stripes (b). During the change of the magnetic field, the recording
film was moved parallel to the system of stripes. The shift in the system of stripes
can clearly be seen. In Figure 1.31b for the total field change, the shift amounts
to about three complete periods. Hence, in this experiment, the phase difference
between the partial beams was changed by the magnetic field by about 3× 2π.
The special feature of this experiment is the fact that themagnetic field was very

carefully restricted to the interior of the coil. In this experiment, the field lines of
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the return flux were concentrated into a yoke made of a magnetic material and
placed outside the loop area of the electron beams. The shift of the interference
pattern was observed, although no Lorentz force acted on the electrons. The only
forces were the constant electrostatic forces originating from the biprisms. Hence,
an effect appears that cannot be explained within a classical particle concept. The
interference pattern changed as a function of the magnetic flux enclosed between
the two particle beams, without additional forces acting on the electron trajec-
tory. This non-classical effect was predicted already in 1959 by Aharonov and
Bohm [53]. Subsequently, its discussion was highly controversial. However, the
prediction of Aharonov and Bohm could be confirmed by means of ring-shaped
magnets covered with a superconducting overlay, such that themagnetic field was
completely restricted to the interior of the magnets [14].
Based on this principle of electron holography, also the flux lines shown in

Figure 1.10d were imaged. In this experiment, quantum mechanics appears
twofold: on the one hand, the wave nature of the electrons was utilized for
imaging; on the other, it was the quantized magnetic flux of a vortex that was
detected in the superconductor.
The observation of flux quantization and of quantum interference in Josephson

junctions and in SQUID rings has clearly shown that the appearance of a coher-
ent matter wave represents the key property of the superconducting state. For the
amount of charge of the superconducting charge carriers, the value 2e has always
been found. In Chapter 3, we will describe how this Cooper pairing is accom-
plished. However, first we will turn to the different superconducting materials.
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