Contents

Part I **Introduction and Preliminary Material**

1	Intr	oduction	1	3					
	1.1	Conten	t and Organization of the Book	6					
	1.2	When <i>X</i>	X is a Brownian Motion	9					
		1.2.1	The Normalized Functionals $V''(f, X)$	9					
		1.2.2	The Non-normalized Functionals $V^n(f, X)$	12					
	1.3	When <i>X</i>	X is a Brownian Motion Plus Drift	14					
		1.3.1	The Normalized Functionals $V'^n(f, X)$	14					
		1.3.2	The Non-normalized Functionals $V^n(f, X)$	15					
	1.4 When X is a Brownian Motion Plus Drift Plus a Compou								
		Poisson	Process	16					
		1.4.1	The Law of Large Numbers	16					
		1.4.2	The Central Limit Theorem	18					
2	Som	e Prereg	luisites	23					
	2.1	Semima	artingales	23					
		2.1.1	First Decompositions and the Basic Properties						
			of a Semimartingale	24					
		2.1.2	Second Decomposition and Characteristics						
			of a Semimartingale	29					
		2.1.3	A Fundamental Example: Lévy Processes	33					
		2.1.4	Itô Semimartingales	35					
		2.1.5	Some Estimates for Itô Semimartingales	39					
		2.1.6	Estimates for Bigger Filtrations	44					
		2.1.7	The Lenglart Domination Property	45					
	2.2	Limit T	heorems	45					
		2.2.1	Stable Convergence in Law	46					
		2.2.2	Convergence for Processes	48					
		2.2.3	Criteria for Convergence of Processes	50					
		2.2.4	Triangular Arrays: Asymptotic Negligibility	53					

vii

		2.2.5 Convergence in Law of Triangular Arrays	56											
		Bibliographical Notes	59											
Par	t II	The Basic Results												
3	Law	s of Large Numbers: The Basic Results	63											
	3.1	Discretization Schemes	63											
	3.2	Semimartingales with <i>p</i> -Summable Jumps	66											
	3.3	Law of Large Numbers Without Normalization	69											
		3.3.1 The Results	69											
		3.3.2 The Proofs	73											
	3.4	Law of Large Numbers with Normalization	79											
		3.4.1 Preliminary Comments	79											
		3.4.2 The Results	80											
		3.4.3 The Proofs	83											
	3.5	Applications	91											
		3.5.1 Estimation of the Volatility	92											
		3.5.2 Detection of Jumps	93											
		Bibliographical Notes	96											
4	Cen	tral Limit Theorems: Technical Tools	97											
	4.1	Processes with <i>F</i> -Conditionally Independent Increments	97											
		4.1.1 The Continuous Case	98											
		4.1.2 The Discontinuous Case	100											
		4.1.3 The Mixed Case	104											
	4.2	Stable Convergence Result in the Continuous Case	105											
	4.3	A Stable Convergence Result in the Discontinuous Case												
	4.4	An Application to Itô Semimartingales												
		4.4.1 The Localization Procedure	114											
		4.4.2 A Stable Convergence for Itô Semimartingales	121											
5	Cen	tral Limit Theorems: The Basic Results	125											
	5.1	The Central Limit Theorem for Functionals Without Normalization	125											
		5.1.1 The Central Limit Theorem, Without Normalization	126											
		5.1.2 Proof of the Central Limit Theorem, Without Normalization	129											
	5.2	The Central Limit Theorem for Normalized Functionals:												
		Centering with Conditional Expectations	133											
		5.2.1 Statement of the Results	134											
		5.2.2 The Proof	137											
	5.3	The Central Limit Theorem for the Processes $\overline{V}^{n}(f, X)$	144											
		5.3.1 Assumptions and Results	145											
		5.3.2 Localization and Elimination of Jumps	149											
		5.3.3 Proof of the Central Limit Theorem for $V''(f, X)$	151											
	5.4	The Central Limit Theorem for Quadratic Variation	160											
	5.5	A Joint Central Limit Theorem	173											
	5.6	Applications	176											
		5.6.1 Estimation of the Volatility	176											

		5.6.2 Detection of Jumps	179		
		5.6.3 Euler Schemes for Stochastic Differential Equations .			
		Bibliographical Notes	185		
6	Inte ; 6.1	grated Discretization Error	187 188		
	0.2	6.2.1 An Application of Itô's Formula	192 193		
		6.2.2 Reduction of the Problem	196		
	6.3	Proof of the Theorems	201		
		6.3.1 Proof of Theorem 6.1.2	202		
		6.3.2 Proof of Theorem 6.1.3	208		
		6.3.3 Proof of Theorem 6.1.4	208		
		6.3.4 Proof of Theorem 6.1.8	210		
Par	t III	More Laws of Large Numbers			
7	Firs	t Extension: Random Weights	215		
	7.1	Introduction	215		
	7.2	The Laws of Large Numbers for $V^m(F, X)$	217		
	1.3 7 A	The Laws of Large Numbers for $V''(F, X)$	219		
0	7.4		222		
0	Secu 8 1	Introduction	227		
	8.2	The Law of Large Numbers for $V^n(F, X)$ and $\mathcal{V}^n(F, X)$.	230		
	8.3	The Law of Large Numbers for $V^n(\Phi, k_n, X)$	234		
	8.4	The LLN for $V^{\prime n}(F, X)$, $\mathcal{V}^{\prime n}(F, X)$ and $V^{\prime n}(\Phi, k_n, X)$	238		
		8.4.1 The Results	238		
		8.4.2 The Proofs	239		
	8.5	Applications to Volatility	244		
9	Thir	d Extension: Truncated Functionals	247		
	9.1	Approximation for Jumps \dots Det of Y	248		
	9.2	Approximation for the Continuous Part of X	250		
	9.5	From Local Approximation to Global Approximation	261		
	9.5	Local Approximation for the Continuous Part of X: Part II	264		
	9.6	Applications to Volatility	269		
Dort	• 117	Extensions of the Central Limit Theorems			
10	- I V - TL-	Control Limit Theorem for Donders Weichte	070		
10	10.1	Functionals of Non-normalized Increments-Part I	213		
	10.2	Functionals of Non-normalized Increments—Part II	278		
	10.3	Functionals of Normalized Increments	283		
	10.4	Application to Parametric Estimation	290		
		Bibliographical Notes	296		

11	The Central Limit Theorem for Functions of a Finite Number
	of Increments
	11.1 Functionals of Non-normalized Increments
	11.1.1 The Results
	11.1.2 An Auxiliary Stable Convergence
	11.1.3 Proof of Theorem 11.1.2
	11.2 Functionals of Normalized Increments
	11.2.1 The Results
	11.2.2 Elimination of Jumps
	11.2.3 Preliminaries for the Continuous Case
	11.2.4 The Processes Y^n and \mathcal{Y}^n
	11.2.5 Proof of Lemma 11.2.7
	11.3 Joint Central Limit Theorems
	11.4 Applications
	11.4.1 Multipower Variations and Volatility
	11.4.2 Sums of Powers of Jumps
	11.4.3 Detection of Jumps
	Bibliographical Notes
12	The Central Limit Theorem for Functions of an Increasing Number
	of Increments
	12.1 Functionals of Non-normalized Increments
	12.1.1 The Results
	12.1.2 An Auxiliary Stable Convergence Result
	12.1.3 Proof of Theorem 12.1.2
	12.2 Functionals of Normalized Increments
	12.2.1 The Results \ldots 356
	12.2.2 Preliminaries for the Proof
	12.2.3 Proof of Lemma 12.2.4
	12.2.4 Block Splitting
	12.2.5 Proof of Lemma 12.2.3
13	The Central Limit Theorem for Truncated Functionals
	13.1 A Central Limit Theorem for Approximating the Jumps 371
	13.2 Central Limit Theorem for Approximating the Continuous Part 377
	13.2.1 The Results
	13.2.2 Proofs
	13.3 Central Limit Theorem for the Local Approximation
	of the Continuous Part of X
	13.3.1 Statements of Results
	13.3.2 Elimination of the Jumps and of the Truncation
	13.3.3 The Scheme of the Proof in the Continuous Case 400
	13.3.4 Proof of Lemma 13.3.12
	13.3.5 Proof of There 13.3.13
	13.3.0 Proof of Theorem 13.3.8
	13.4 Anomer Central Limit Theorem Using Approximations
	of the spot volatility \ldots 410

	13.5	13.4.1 Statements of Results	411 414 422 426
Part	t V	Various Extensions	
14	Irreg	gular Discretization Schemes	429
	14.1	Restricted Discretization Schemes	430
	14.2	Law of Large Numbers for Normalized Functionals	437
	14.3	Central Limit Theorem for Normalized Functionals	444
		14.3.1 The Results	444
		14.3.2 Preliminaries	447
		14.3.3 The Scheme of the Proof when X is Continuous \ldots .	450
		14.3.4 Proof of Lemma 14.3.4	451
		14.3.5 Proof of Lemma 14.3.5	453
	14.4	Application to Volatility	458
		Bibliographical Notes	460
15	High	er Order Limit Theorems	461
10	15.1	Examples of Degenerate Situations	462
	15.2	Functionals of Non-normalized Increments	464
	15.3	Applications	474
		Bibliographical Notes	477
17	C	in anti-	470
10	Semi	Imartingales Contaminated by Noise	4/9
	10.1	Structure of the Noise and the Pre-averaging Scheme	400
		10.1.1 Structure of the Noise	400
	16 2	10.1.2 The Fle-averaging Scheme	402
	16.2	Law of Large Numbers for General (Noisy) Semimaringates	405
	10.5	Increments	488
		16.3.1 The Results	489
		16.3.2 A Local Stable Convergence Result	492
		16.3.3 A Global Stable Convergence Result	503
		16.3.4 Proof of Theorem 16.3.1	510
	164	Laws of Large Numbers for Normalized Functionals	510
	10.4	and Truncated Functionals	512
		16.4.1 Statement of Results	512
		16.4.2 The Proofs	514
	165	I aws of Large Numbers and Central Limit Theorems for Integral	511
	10.5	Power Functionals	521
		16.5.1 The Laws of Large Numbers	521
		1652 Central Limit Theorems: The Results	530
		16.5.2 Contra Entite Theorems. The Results	535
		16.5.4 Proof of Theorem 16.5.7	546
	16.6	The Quadratic Variation	554
	10.0	Bibliographical Notes	563
			200

Appen					•			•										565		
Α	.1	Estimates for Itô Semimartingales		•		•			•			•			•					565
Α	.2	Convergence of Processes							•	•		•		•			•			572
Α	.3	Triangular Arrays				•	•		•	•		•	•	•	•	•	•	•	•	577
Α	.4	Processes of Finite Variation							•	•		•		•				•		579
A	.5	Some Results on Lévy Processes	•	•		•			•	•	•	•	•	•	•	•	•	•	•	581
Assum	•	•		•			•		•	•	•	•	•	•	•	•		583		
Refere	ence	es		•	• •	•	•	•	•	•	•	•		•	•		•	•	•	585
Index	of]	Functionals		•		•	•	•	•	•	•	•	•	•	•		•	•	•	589
Index	•	<i>.</i>				•											•			593