Mathematical and Computational Modeling and Simulation - Dietmar P.F. Möller

Mathematical and Computational Modeling and Simulation

Fundamentals and Case Studies
Buch | Softcover
XV, 422 Seiten
2003
Springer Berlin (Verlag)
978-3-540-40389-0 (ISBN)
80,24 inkl. MwSt
lt;p>This introduction and textbook familiarizes engineers with the use of mathematical and computational modeling and simulation in a way that develops their understanding of the solution characteristics of a broad class of real-world problems. The relevant basic and advanced methodologies are explained in detail, with special emphasis on ill-defined problems. Some fifteen simulation systems are presented on the language and the logical level. Moreover, the reader also can accumulate an experiential overview by studying the wide variety of case studies spanning much of science and engineering. The latter are briefly described within the book but their full versions as well as some simulation software demos are available on the Web. The book can be used for courses on various levels as well as for self-study. Advanced sections are identified and can be skipped in a first reading or in undergraduate courses.

1 Modeling Continuous-Time and Discrete-Time Systems.- 1.1 Introduction.- 1.2 Modeling Formalisms.- 1.3 System Elements and Models of Continuous-Time Systems.- 1.3.1 Electrical Elements.- 1.3.2 Particle Dynamics.- 1.3.3 Mechanical Elements.- 1.3.4 Fluid Mechanics.- 1.3.5 Diffusion Dynamics.- 1.3.6 Thermodynamics.- 1.3.7 Chemical Dynamics.- 1.4 Block Diagram-based Algebraic Representation of Systems.- 1.4.1 Introduction.- 1.42. Block Diagram Algebra.- 1.5 Basic Principles of Discrete-Time Systems.- 1.5.1 Introduction.- 1.5.2 Modeling Concept of Discrete-Time Systems.- 1.5.3 Simulation Concept.- 1.6 Model Validation.- 1.7 References and Further Reading.- 1.8 Exercises.- 2 Mathematical Description of Continuous-Time Systems.- 2.1 Introduction.- 2.1.1 Representation of System Differential Equations in Terms of Vector-Matrix Notation.- 2.1.2 Existence and Uniqueness of Solutions of Differential Equations.- 2.2 Controllability, Observability, and Identifiability.- 2.3 Time Domain Solution of the Linear State Equation System.- 2.4 Solution of the State Equation using the Laplace Transform.- 2.5 Eigenvalues of the Linear Vector-Equation Systems*.- 2.6 Stability Analysis*.- 2.6.1 Routh Hurwitz Criterion*.- 2.6.2 Nyquist Criterion*.- 2.6.3 Ljapunov Stability Theorem*.- 2.7 First-Order Linear State-Equation Models.- 2.8 Second-Order Linear State-Equation Models.- 2.9 Higher-Order Linear State-Space Models*.- 2.10 Nonlinear State-Space Models*.- 2.11 References and Further Reading.- 2.12 Exercises.- 3 Mathematical Description of Discrete-Time Systems.- 3.1 Introduction.- 3.2 Statistical Models in Discrete-Time Systems.- 3.2.1 Random Variables.- 3.2.2 Distributions.- 3.3 Discrete-Event Simulation of Queuing systems.- 3.4 Petri-Nets.- 3.5 Discrete-Event Simulation of Parallel Systems.- 3.5.1 Introduction.- 3.5.2 Basic Tasks.- 3.6 References and Further Reading.- 3.7 Exercises.- 4 Simulation Sofware for Computational Modeling and Simulation.- 4.1 Introduction.- 4.2 Digital Simulation Systems.- 4.3 Simulation Software for Continuous-Time Systems.- 4.3.1 Block Oriented Simulation Software.- 4.3.2 Equation-Oriented Simulation Software.- 4.3.3 General-Purpose Simulation Software.- 4.3.4 Component-Based Simulation Software.- 4.3.5 High-Performance Simulation Software for Technical Computing.- 4.4 Discrete-Time System Simulation Software*.- 4.5 Multi-Domain Simulation Software for Large-Scale Systems*.- 4.6 Simulation Software for Mixed-Mode Circuits*.- 4.7 Combined Simulation Software.- 4.8 Checklist for the Selection of Simulation Software.- 4.9 References and Further Reading.- 4.10 Exercises.- 4.11 Case Study Examples.- 4.11.1 FEMLAB.- 4.11.2 ModelMaKer.- 5 Parameter Identification of Dynamic Systems.- 5.1 Introduction.- 5.2 Mathematical Notation of the Identification Task.- 5.3 Identification Task.- 5.4 Output-Error Least Squares Method*.- 5.5 Equation-Error Least Squares Method*.- 5.6 Consistency of the Parameter Estimates*.- 5.7 Consistency Modifications of the Equation-Error Method*.- 5.8 Identifiability*.- 5.9 System Input Properties*.- 5.10 Parameter Identification of the Cardiovascular System*.- 5.11 Error-Functional Minimization by Gradient Methods*.- 5.12 Error-Functional Minimization by Direct Search Methods*.- 5.13 Identifiability and the Output-Error Least Squares Method*.- 5.14 References and Further Reading.- 5.15 Exercises.- 6 Soft-Computing Methods.- 6.1 Introduction.- 6.2 Fuzzy Logic.- 6.2.1 Pure Fuzzy-Logic Systems.- 6.2.2 Takagi and Sugeno fuzzy logic systems.- 6.2.3 Fuzzy-Logic Systems with Fuzzification and Defuzzification.- 6.2.4 Fuzzy Modeling of a Soccer Playing Mobile Robot.- 6.2.5 Fuzzy Modeling of a Wastewater Treatment Plant*.- 6.2.6 Fuzzy-Logic Control System*.- 6.3 Neural Nets*.- 6.4 References and Further Reading.- 6.5 Exercises.- 7 Distributed Simulation.- 7.1 Introduction.- 7.2 Distributed Simulation of Traffic and Transportation.- 7.2.1 Introduction.- 7.2.2 Traffic-Simulation Model.- 7.2.3 Distributed Traffic-Simulation System.- 7.2.4 Description and Implementation of Road Networks.- 7.2.5 Implementation and Simulation.- 7.2.6 Distributed Transportation.- 7.3 Introduction into HLA*.- 7.3.1 HLA at the Very First*.- 7.3.2 Federation Rules*.- 7.3.3 Interface Specification*.- 7.3.4 Object Model Template (OMT)*.- 7.3.5 Suggested Steps at the Very First*.- 7.3.6 Land-based Transportation*.- 7.3.7 HLA Land-based Transportation Simulator*.- 7.3.8 HLA Description of Road Networks*.- 7.4 References and Further Reading.- 7.5 Exercises.- 8 Virtual Reality.- 8.1 Introduction.- 8.2 Virtual Reality applied to Medicine.- 8.2.1 Introduction.- 8.2.2 Morphing.- 8.2.3 Deformable Models*.- 8.2.4 Deformable Models for Surface Reconstruction in Medicine*.- 8.3 Virtual Reality in Geo Science*.- 8.3.1 Introduction*.- 8.3.2 Modeling and Simulation of Space and Time*.- 8.3.3 Combined Virtual Reality System CoRe*.- 8.4 DDSim Prototyping Tool for Autonomous Robots.- 8.5 References and Further Reading.- 8.6 Exercises.- Appendix A.- Numeric Integration.- Single-Step Formulae.- Multi-Step Formulae.- Appendix B.- Laplace Transform.- Appendix C.- Online Resources.

Erscheint lt. Verlag 19.8.2003
Zusatzinfo XV, 422 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 658 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Technik Elektrotechnik / Energietechnik
Schlagworte ACSL • Algebra • AnyLogic • B2Spice A/D • Computational Science • Computersimulation • Continous-time systems • CSM • CSMP • Discrete-time systems • Dynamical Systems • FEMLAB • GPSS • Identification • Ill-defined Problem • ill-posed problem • Mathematical Modeling • MATLAB • Modelica • Modelmaker • numerical simulation • PASION • SIDAS • SIMAN V • SIMSCRIPT • SIMULINK • SLX • Soft Computing • Statistica • Steuerungstechnik • Virtual Reality
ISBN-10 3-540-40389-2 / 3540403892
ISBN-13 978-3-540-40389-0 / 9783540403890
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
64,95