Femtosecond Laser Micromachining -

Femtosecond Laser Micromachining

Photonic and Microfluidic Devices in Transparent Materials
Buch | Softcover
XVIII, 486 Seiten
2014 | 2012
Springer Berlin (Verlag)
978-3-642-44336-7 (ISBN)
299,59 inkl. MwSt
This book describes state-of-the-art micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and is exploitable for fabrication of complex microsystems.
Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.

Roberto Osellame is a Research Associate at the Institute of Photonics and Nanotechnology (IFN), Milan, Italy, of the National Research Council (CNR). From 2001 he is also a Contract Professor of Experimental Physics at the Politecnico di Milano. His research interests include integrated all-optical devices on nonlinear crystals, femtosecond laser micromachining of transparent material, fabrication and characterization of photonic and optofluidic devices and biophotonic applications. He is author of more than 60 scientific papers in premier peer-reviewed journals and received several invitations to major international conferences. He is inventor of two licensed patents in the field of photonics. He is in the technical program committees of the conferences CLEO Europe and Photonics West. He is currently the project coordinator of the 7th Framework Program EU project 'microFLUID' (2008-2011). Giulio Cerullo is Associate Professor of Physics at Politecnico di Milano. His current scientific interests concern generation of few-optical-cycle pulses, ultrafast spectroscopy with time resolution down to a few femtoseconds, and micro/nanostructuring by ultrashort pulses. He is the author of about 200 papers in international journals and has given over 40 invited presentations at international conferences. He is in the technical program committees of the conferences CLEO Europe, CLEO U.S.A., Photonics Europe and Ultrafast Phenomena. He is Topical Editor of the journal Optics Letters for the topic Ultrafast Optical Phenomena. He coordinates the European project HIBISCUS (Hybrid Integrated Bio-Sensors Created by Ultrafast Laser Sources). Roberta Ramponi is Full Professor of Physics at the Politecnico di Milano, and chair of the bachelor and master-of-science degrees in Physics Engineering. She has a long-standing cooperation with the CNR Institute of Photonics and Nanotechnology as associate researcher. Her research activity includes integrated and nonlinear optics, the development of novel fabrication and characterization techniques for optical waveguides, and photonic devices for applications to telecommunications and to biomedical and environmental sensing. She is co-author of over 130 international publications. She was the President of the European Optical Society (EOS) in 2006-2008, now being the Past-President.

Part I: Introductory concepts and characterization.- Fundamentals of femtosecond Laser micromachining in transparent materials.- Ultrafast imaging of plasma dynamics and material response during micromachining.- Spectroscopic characterization of waveguides.- Optimizing Laser-induced refractive index changes in bulk optical materials via spatio-temporal beam shaping.- Controlling the cross-section of ultrafast Laser inscribed waveguides.- Anisotropy of femtosecond Laser writing Part II: Waveguides and optical devices in glass.- Passive optical waveguide devices in glass.- Femtosecond Laser inscription of fibre gratings.- 3-D Bragg grating waveguide devices.- Active photonic devices Part III: Waveguides and optical devices in other transparent materials.- Waveguides in crystalline materials.- Refractive index structures in polymers Part IV: Microsystems and applications.- Discrete optics in waveguide arrays.- Optofluidics for biosensing.- Microstructuring of Photosensitive glass.- Microsystems and sensors.- Ultrashort Laser joining and welding.

Erscheint lt. Verlag 17.4.2014
Reihe/Serie Topics in Applied Physics
Zusatzinfo XVIII, 486 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 765 g
Themenwelt Naturwissenschaften Physik / Astronomie Optik
Technik Elektrotechnik / Energietechnik
Schlagworte Femtosecond Laser Micromachining • Femtosecond lasers • Microfabrication of Transparent Materials • Transparent Materials • Ultrashort Laser Joining and Welding
ISBN-10 3-642-44336-2 / 3642443362
ISBN-13 978-3-642-44336-7 / 9783642443367
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
Mehr entdecken
aus dem Bereich
Grundlagen - Verfahren - Anwendungen - Beispiele

von Jens Bliedtner

Buch | Hardcover (2022)
Hanser, Carl (Verlag)
49,99

von Eugene Hecht

Buch | Hardcover (2023)
De Gruyter Oldenbourg (Verlag)
104,95