Applied Superconductivity

Handbook on Devices and Applications

Paul Seidel (Herausgeber)

Buch | Hardcover
1336 Seiten
2015 | 1. Auflage
Wiley-VCH (Verlag)
978-3-527-41209-9 (ISBN)
540,00 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
An essential reference for physicists and engineers in academic research as well as those working in the field, ranging from fundamentals and materials, right up to applications in mechanical and power engineering, particle physics, fusion research, medicine and biomagnetism.
This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the latest applications, is an essential reference for physicists and engineers in academic research as well as in the field. Readers looking for a systematic overview on superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors, including organic and magnetic materials. Technology, preparation and characterization are covered for several geometries, but the main benefit of this work lies in its broad coverage of significant applications in power engineering or passive devices, such as filter and antenna or magnetic shields. The reader will also find information on superconducting magnets for diverse applications in mechanical engineering, particle physics, fusion research, medicine and biomagnetism, as well as materials processing. SQUIDS and their usage in medicine or geophysics are thoroughly covered as are applications in quantum metrology, and, last but not least, superconductor digital electronics is addressed, leading readers from fundamentals to quantum computing and new devices.

Edited by Paul Seidel, Professor of Applied Physics at the University of Jena and head of the department of Low Temperature Physics. His main fields of research are thin film deposition and growth, patterning, multilayers, tunneling, Josephson effects, and cryoelectronics. His strong engagement with the community is documented by serving as scientific board member of many international conferences and symposia. Paul Seidel has published more than 200 articles in international journals and contributed to more than 80 books. He is teaching both experimental and theoretical physics and offers special lectures in solid state and low temperature physics.

1. Fundamentals
1.1 Superconductivity
1.1.1 Basic Properties and Parameters of Superconductors (Reinhold Kleiner)
1.1.2 Review on Superconducting Materials (Roland Hott, Reinhold Kleiner, Thomas Wolf, Gertrud Zwicknagel)
1.2 Main Related Effects
1.2.1 Proximity Effect (Mikhail Belogolovskii)
1.2.2 Tunneling and Superconductivity (Steven Ruggiero)
1.2.3 Flux Pinning (Stuart Wimbush)
1.2.4 AC Losses and Numerical Modeling of Superconductors (Francesco Grilli, Frederic Sirois)

2. Superconducting Materials
2.1 Low Temperature Superconductors
2.1.1 Metals and Alloys (Helmut Krauth, Klaus Schlenga)
2.1.2 Magnesiumdiborid (Davide Nardelli, Ilaria Pallecchi, Matteo Tropeano)
2.2 High Temperature Superconductors
2.2.1 Cuprate High Temperature Superconductors (Roland Hott, Thomas Wolf)
2.2.2 Iron-based Superconductors (Ilaria Pallecchi, Marina Putti)

3. Technology, Preparation and Characterization
3.1 Bulk Materials
3.1.1 Preparation of bulk and textured Superconductors (Frank N. Werfel)
3.1.2 Preparation of Single Crystals (Andreas Erb)
3.1.3 Properties of Bulk Materials (Günter Fuchs, Gernot Krabbes,Wolf-Rüdiger Canders)
3.2 Thin Films and Multilayers
3.2.1 Thin Film Deposition (Roger Wördenweber)
3.3 Josephson Junctions and Circuits
3.3.1 LTS Josephson Junctions (Hans-Georg Meyer, Ludwig Fritzsch, Solveig Anders, Matthias Schmelz, Jürgen Kunert, Gregor Oelsner)
3.3.2 HTS Josephson Junctions (Keiichi Tanabe)
3.4 Wires and Tapes
3.4.1 Powder-in tube Superconducting Wires (Tengming Shen, Jianyi Jiang, Eric Hellstrom)
3.4.2 YBCO Coated Conductors (Mariappan Parans Paranthaman, Tolga Aytug, Liliana Stan, Quanxi Jia, Claudia Cantoni)

3.5 Cooling
3.5.1 Fluid Cooling (Luca Bottura, Cesar Luongo)
3.5.2 Cryocoolers (Gunter Kaiser, Gunar Schröder)
3.5.3 Cryogen-free Cooling Systems (Gunter Kaiser, Andreas Kade)

4. Superconducting Magnets
4.1 Bulk Superconducting Magnets for Bearings and Levitation (John R. Hull)
4.1.1 Introduction
4.1.2 Understanding levitation with bulk superconductors
4.1.3 Rotational loss
4.1.4 A rotator dynamic issue
4.1.5 Practical bearing consideration
4.1.6 Applications
4.2 Fundamentals of Superconducting Electromagnets (Martin N. Wilson)
4.2.1 Windings to produce different field shapes
4.2.2 Current supply
4.2.3 Load lines, degradation and training
4.2.4 Cryogenic stabilization
4.2.5 Mechanical disturbances and minimum quench energy
4.2.6 Screening currents and the critical state model
4.2.7 Magnetization and flux jumping
4.2.8 Filamentary wires and cables
4.2.9 AC losses
4.2.10 Quenching and protection
4.3 Magnets for Particle Accelerators and Storage Rings (Lucio Rossi, Luca Bottura)
4.3.1 Introduction
4.3.2 Accelerator, colliders and role of superconducting magnets
4.3.3 Magnetic design
4.3.4 Mechanical design
4.3.5 Margins, stability, training and protection
4.3.6 Field quality
4.3.7 Fast-cycled synchrotrons
4.4 Superconducting Detector Magnets for particle physics (Michael Green)
4.4.1 The development of detector solenoids
4.4.2 LHC detector magnets for the ATLAS, CMC and ALICE experiments
4.4.3 The future of detector magnets for particle physics
4.4.4 The defining parameters for thin solenoids
4.4.5 Thin detector solenoids design criteria
4.4.6 Magnet power supply and coil quench protection
4.4.7 Design criteria for the ends of a detector solenoid
4.4.8 Cryogenic cooling of a detector magnet
4.5 Magnets for NMR and MRI (Yukikazu Iwasa, Seungyong Hahn)
4.5.1 Introduction to NMR and MRI Magnets
4.5.2 Specific Design Issues for NMR & MRI Magnets
4.5.3 Status (2013) of NMR and MRI Magnets
4.5.4 HTS Applications to NMR and MRI Magnets
4.5.5 Conclusions
4.6 Superconducting Magnets for Fusion (Jean-Luc Duchateau)
4.6.1 Introduction to fusion and superconductivity
4.6.2 ITER
4.6.3 Cable in Conduit conductors (CICC)
4.6.4 Quench protection in fusion magnets
4.6.5 Prospective about future fusion reactors Demo
4.6.6. Conclusion
4.7 Magnets for Separation, Crystal Growth and Inductive Melting (Swarn Kalsi)
4.7.1 Introduction
4.7.2 High field Magnets
4.7.3 Low Field Magnets
4.7.4 Outlook
4.8 Levitation: Maglev and Transport (John R. Hull)
4.8.1 Introduction
4.8.2 Magnetic Levitation: Principles and Methods
4.8. 3. Maglev Ground Transport
4.8.4 Clean Room Application
4.8.5 Air and Space Launch

5. Power Applications
5.1 Superconducting Cables (Werner Prusseit, Robert Bach, Joachim Bock)

5.1.1 Power cable technology
5.1.2 Current rather than voltage ? advantages of superconducting state
5.1.3 HTS-cable designs
5.1.4 Economic benefits of HTS distribution grids
5.1.5 Specific applications of HTS cables
5.1.6 Conclusions

5.2 Practical design of HTS current leads (Jonathan A. Demko)
5.2.1 Introduction
5.2.2 Cryogenic cooper properties
5.2.3 Thermally optimized current lead in a vacuum
5.2.4 Non-optimal operation
5.2.5 Vapor or forced flow cooled current leads
5.2.6 Refrigeration requirements
5.2.7 Short duration overcurrent heating
5.2.8 Conclusions
5.3 Fault Current Limiters (Swarn Kalsi)
5.3.1 Introduction
5.3.2 S-FCL concept description
5.3.3 Challenges
5.3.4 Manufacturing issues
5.3.5 Examples of built hardware
5.3.6 Overlook

5.4 Transformers (Antonio Morandi)

5.4.1 Introduction
5.4.2 Basic aspects
5.4.3 Construction issues and state-of-the-art of superconducting transformers
5.4.4 Design and economic evaluation of a HTS power transformer
5.4.4.1 Design procedure

5.5 Energy Storage (SMES and flywheels) (Antonio Morandi)
5.5.1 Introduction
5.5.2 Parameters of an energy storage system
5.5.3 Applications of energy storage
5.5.4 SMES
5.5.5 Flywheels
5.6 Rotating Machines (Motors and Generators) (Swarn Kalsi)
5.6.1 Introduction
5.6.2 Topology
5.6.3 Design and analysis
5.6.4 Outlook
5.7 Superconductivity in Smart Grids (Nouredine Hadjsaid, Pascal Tixador, Jean-Claude Sabonadiere, C. Gandioli, M.-C. Alvarez-Herault)
5.7.1 Introduction
5.7.2 The new energy paradigm
5.7.3 Integration of advanced technologies
5.7.4 The European energy prospective
5.7.5 Main triggers of the development of the smart grids
5.7.6 Definition of the smart grids
5.7.7 Objectives addressed by the transmission Smart Grids
5.7.8 Objectives addressed by the distribution smart grids
5.7.9 Examples of development of innovative concepts
5.7.10 Scientific, technological, economical and sociological challenges
5.7.11 Opportunities for superconductivity
5.7.12 Conclusion

6. Superconductive Passive Devices
6.1 Microwave Components (Filter, Antennas, Delay Lines) (Neeraj Khare)

6.1.1 Introduction
6.1.2 Resonators
6.1.3 Filters
6.1.4 Cryogenic receiver front-end
6.1.5 Antenna
6.1.6 Delay lines
6.2 Cavities for Accelerators (Sergey Belomestnykh, Hasan S. Padamsee)
6.2.1 Introduction to radio frequency superconductivity for accelerators
6.2.2 Physics of RF superconductivity
6.2.3 Fabrication and surface preparation
6.2.4 Effects limiting performance of superconducting cavities
6.2.5 Concluding remarks
6.3 Superconducting pick-up coils (Audrius Brazdeikis, Jarek Wosik)
6.3.1 Introduction
6.3.2 HTS pickup coils for high-field MRI applications
6.3.3 Superconducting pickup coils for SQUID measurements
6.3.4 SQUID pickup for ultra low-field NMR/MRI
6.4 Magnetic Shields (James Claycomb)
6.4.1 Introduction
6.4.2 low-field magnetic measurements
6.4.3 Image surface gradiometers
6.4.4 Superconducting disk
6.4.5 Semi-infinite superconducting tube
6.4.6 Semi-infinite highly permeable tube
6.4.7 Partitioned superconducting tubes
6.4.8 Numerical modeling of superconductors in external fields
6.4.9 AC shielding applications
6.4.10 Space applications
6.4.11 Commercial HTS magnetic shields
6.4.12 Conclusions

7. Applications in Quantum Metrology
7.1 Quantum Standards for Voltage (Johannes Kohlmann)
7.1.1 Introduction
7.1.2 Fundamentals
7.1.3 DC measurements: conventional Josephson voltage standards
7.1.4 From DC to AC Josephson voltage standards
7.1.5 Conclusions
7.2 Single Cooper pair circuits and Quantum Metrology (Alexander B. Zorin)
7.2.1 Introduction
7.2.2 Engineering of the electromagnetic environment
7.2.3 The Bloch oscillations and their phase locking
7.2.4 New concepts of the experiment with superconducting nanowires
7.2.5 Cooper pair pumps and single quasiparticle circuits
7.2.6 Metrological aspect
7.2.7 Conclusion

8. Superconducting Radiation and Particle Detectors
8.1 Radiation and Particle Detectors (Claus Grupen)
8.1.1 Introduction
8.1.2 Basic interactions
8.1.3 Historical detectors
8.1.4 Gaseous detectors
8.1.5 Scintillators and solid-state devices
8.1.5.1 Solid-state detectors
8.1.6 Cherenkov detectors
8.1.7 Calorimeters
8.1.8 Cryogenic detectors
8.2 Superconducting Hot Electron Bolometers and Transition Edge Sensors (Giovanni Piero Pepe, Roberto Cristiano, Flavio Gatti)
8.2.1 Introduction
8.2.2 The energy scenario and time scales
8.2.3 The Hot Electron Bolometer (HEB)
8.2.4 The Transition Edge Sensor (TES)
8.2.5 The main physical parameters
8.2.6 Recent achievements
8.3 Mixers (Doris Maier)
8.3.1 Introduction
8.3.2 Superconducting tunnel junctions
8.3.3 Quantum mixer theory
8.3.4 SIS mixers
8.3.5 Perspectives
8.4 Superconducting Photon Detectors (Michael Siegel)
8.4.1 Superconducting single-photon detectors
8.4.2 Photon and particle detectors with superconducting tunnel junctions (STJ)
8.4.3 Conclusions
8.5 Applications at Different Frequencies (THz) (Masayoshi Tonouchi)
8.5.1 Introduction
8.5.2 Application of THz waves
8.5.3 Superconductive electronics for THz application
8.5.4 Summary
8.6 Detector Readout (Thomas Ortlepp)
8.6.1 Introduction
8.6.2 Analog readout
8.6.3 Resonant circuit readout
8.6.4 Digital event readout

9. Superconducting Quantum Interference (SQUIDs)
9.1 Introduction (Robert Fagaly)
9.2 Types of SQUIDs (Robert Fagaly)
9.2.1 RF and DC SQUIDs
9.2.2 Other modulation schemes
9.2.3 Sensitivity
9.2.4 Other types of SQUIDs
9.2.5 Limitations on SQUID technology
9.2.6 Environmental noise
9.2.7 Cryogenic requirements
9.3 Magnetic field sensing with SQUID devices
9.3.1 SQUIDs in laboratory applications (Robert Fagaly)
9.3.2 SQUIDs in NDE (Hans-Joachim Krause, Michael Mück, Saburo Tanaka)
9.3.3 SQUIDs in Biomagnetism (Hannes Nowak)
9.3.4 SQUIDs in Geophysics (Ronny Stolz)
9.3.5 SQUID Microscopes (John Kirtley)
9.4 SQUID Thermometer (Thomas Schurig, Jörn Beyer)
9.4.1 Some basic metrology aspects
9.4.2 The resistive SQUID noise thermometer
9.4.3 Quantum Roulette thermometer
9.4.4 Current sensing thermometer
9.4.5 Magnetic field fluctuation thermometer
9.5 SQUID Amplifier (Michael Mück, Robert McDermott)
9.5.1 Introduction
9.5.2 Amplifying voltages and currents with a SQUID
9.5.3 The SQUID at very high frequencies
9.5.4 Practical SQUID RF amplifiers
9.5.5 Coupling radio-frequency power to the SQUID
9.5.6 Noise temperature of SQUID amplifiers
9.5.7 Input and output impedance of a SQUID RF amplifier
9.5.8 Nonlinearities and intermodulation in SQUID RF amplifiers
9.5.9 Applications of SQUID amplifiers
9.5.10 Conclusion
9.6 Cryogenic Current Comparator (Wolfgang Vodel, René Geithner, Paul Seidel)
9.6.1 Principle of the CCC
9.6.2 Applications in metrology
9.6.3 CCC for beam diagnostics
9.6.4 Use of HTS materials for CCC
9.6.5 Integrated CCCs
9.6.6 Summary and Outlook

10. Superconductor Digital Electronics
10.1 Logic Circuits (John X. Przybysz, Donald L. Miller)
10.1.1 Introduction
10.1.2 Latching logic
10.1.3 RSFQ logic
10.1.4 Low energy logic
10.1.5 Alternative low power logic gates
10.1.6 Output interface circuits
10.1.7 Summary of logic gates
10.2 Superconducting Mixed-Signal Circuits (Hannes Toepfer)
10.2.1 Introduction
10.2.2 Sampler
10.2.3 Analog-to-Digital Converters (ADCs)
10.2.4 Conclusion
10.3 Digital Processing (Oleg Mukhanov)
10.3.1 Introduction
10.3.2 Digital circuits: SFQ design guiding principles
10.3.3 Main digital circuit blocks
10.3.4 Arithmetic modules
10.3.5 Digital processors
10.4 Quantum Computing (Jürgen Lisenfeld)
10.4.1 Introduction
10.4.2 Quantum computing
10.4.3 Decoherence
10.4.4 Phase qubits
10.4.5 Flux qubits
10.4.6 Charge qubits
10.4.7 Transmon qubits
10.5 Advanced superconducting circuits and devices (Martin Weides, Hannes Rotzinger)
10.5.1 Introduction
10.5.2 Field effect devices
10.5.3 Quantum information circuits
10.5.4 Metamaterials at microwave frequencies
10.5.5 Quantum phase slips
10.6 Digital SQUIDs (Pascal Febvre)
10.6.1 Introduction
10.6.2 History of digital SQUIDs
10.6.3 Recent developments of digital SQUIDs
10.6.4 An application if digital SQUIDs for studying natural hazards
10.6.5 Prospects

11. Other Applications
11.1 Josephson Arrays as Radiation Sources (incl. Josephson Laser) (Huabing Wang)
11.1.1 Arrays which are coherent through classical coupling
11.1.2 Arrays which are coherent coupling to an external cavity
11.1.3 Intrinsic Josephson junctions
11.1.4 Summary
11.2 Tunable Microwave Devices (Neeraj Khare)
11.2.1 Introduction
11.2.2 Mechanical/electromechanical Tuning
11.2.3 Electrical Tuning
11.2.4 Magnetic Tuning
11.2.5 Optical Tuning

12. Summary and Outlook (Herbert Freyhardt)

Erscheint lt. Verlag 9.2.2015
Reihe/Serie Encyclopedia of Applied Physics
Sprache englisch
Maße 170 x 244 mm
Gewicht 3115 g
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte Electrical & Electronics Engineering • Electrical & Electronics Engineering • Electronic materials • Elektronische Materialien • Elektrotechnik u. Elektronik • Festkörperphysik • Materials Science • Materialwissenschaften • Physics • Physik • Solid state physics • superconductors • Supraleiter • Supraleitung
ISBN-10 3-527-41209-3 / 3527412093
ISBN-13 978-3-527-41209-9 / 9783527412099
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
Mehr entdecken
aus dem Bereich
DIN-Normen und Technische Regeln für die Elektroinstallation

von DIN; ZVEH; Burkhard Schulze

Buch | Softcover (2023)
Beuth (Verlag)
86,00