anemo)

1	Lower Limb Prosthesis						
	1.1	A Need for Better Functionality of Lower Limb Prostheses					
	1.2	Normalization of Prosthetic Gait Parameters as a Way for					
		Increasing the Prosthesis' Functionality					
		1.2.1	Biomechanics and Prosthetics	4			
		1.2.2	Anthropomorphicity of Lower Limb Prostheses	7			
		1.2.3	Influence of Moment in Prosthetic Ankle Joint				
			on the User's Comfort	12			
		1.2.4	Influence of a Moment in Prosthetic Ankle Joint				
			on the Existing Knee Joint of the Involved Leg	18			
		1.2.5	Measurements of the Pressures on the Residuum				
			from the Socket	20			
	1.3	Struct	ure of Study Design for Development of Lower				
		Limb	Prosthesis	24			
	Refe	ferences					
2	Biomechanical Investigations of Sound and Prosthetic Gait						
	2.1	Kinen	natic and Dynamic Analysis of Motion	29			
	2.2	Mode	ling the Human Body for Motion Analysis	32			
	2.3	Equipment for Motion Analysis					
	2.4	Architecture of Computerized Gait Analysis					
	2.5	Interpretation of Gait Analysis Results					
	Refe	erences					
3	The	Theory of Ballistic Gait in Prosthetics					
			tic Synergy in Normal Gait	39			
		3.1.1	Generation of the Propulsive "Push-Off"	40			
		3.1.2	Regular and Intentional Push-Off	41			
		3.1.3	Computer Simulation of Regular and Intentional Gait	44			
		3.1.4	"Angle-Moment" Dependency in Ankle During Normal Gait	47			
		3.1.5	Contribution of the Knee to Ballistic Synergy	48			
		3.1.6	Implications for Prosthetics	52			

digitalisiert durch NATIONAL BIBLIOTHEK

xvi Contents

	3.2	Active and Passive Moments in Joints	52
	3.3	Model of a One-Step Cycle: Passive Phase	53
		3.3.1 Phase "A" of a Step Cycle	54
		3.3.2 Phase "M" of a Step Cycle	55
		3.3.3 Working Model Simulation of the Balancing	56
	3.4	A Model of a One-Step Cycle	58
		3.4.1 Active Phase "MAHA,"	58
	3.5	Generation of Propulsion in Norm and Disruption	
		of Ballistic Synergy in Prosthetic Gait	60
	3.6	Modeling of One-Leg Standing	64
	3.7	Implication for Prosthetic Design	66
	Refe	erences	67
4		ory of Designing the Anthropomorphic Lower Limb Prostheses	71
	4.1	Synthesis of a Mechanism for Prosthetic Joint	71
		4.1.1 Anatomical Prototype for Modeling a Moment	71
		4.1.2 Trochoidal Model of the Spring Function	
		of the Anatomical Foot	72
		4.1.3 Synthesis of a Mechanism for Prosthetic Ankle	79
	4.2	Development and Testing of the Rolling Joint Foot and Ankle	84
		4.2.1 Development of the Rolling Joint Foot and Ankle	84
		4.2.2 Mechanics Tests of the Rolling Joint Foot and Ankle	87
	4.3	Development and Evaluation of the Rolling Joint Knee	93
		4.3.1 Design Approach	93
		4.3.2 RJ Knee Mechanism	95
		4.3.3 Mechanical Testing of the Rolling Joint Knee Unit	97
		4.3.4 Moment of Resistance to Knee Flexion	98
		4.3.5 Moment of Resistance to the Knee Adduction/Abduction	99
			100
	Refe	erences	100
5	Rior	mechanical Evaluation of Experimental Prostheses	103
,	5.1	_	103
	5.2		104
	5.2		104
			105
			108
			109
			113
	5.3	-	113
	5.5	5.3.1 Symmetry of Distant-Time Characteristics	11.
			115
			115
		5.3.3 Forces and Pressures on Residuum and Their Link	11-
			117
		WILL FLIEND WICHILLIE	

Contents

		5.3.4 Contribution of the RJ Knee vs. RJ Foot	118				
		5.3.5 Biomechanical Testing of Rolling Joint Knee: Conclusion	119				
	5.4	Long-Term Outcomes of Rehabilitation with RJFA	119				
	Refe	erences	121				
6	Principle of Spectral Reciprocity in Biomechanics of Locomotion						
	6.1	Tuning Out of Resonance in Biomechanics of Locomotion	123				
	6.2	When Resonance is Unwanted	123				
	6.3	Model of Spectral Optimization	124				
	6.4	Implication for Prosthetics and Orthotics	127				
	Refe	erences	128				
7	Biomechanical Aspects of Direct Skeletal Attachment						
		ower Limb Prostheses	131				
	7.1	Methodology of Direct Skeletal Attachment	131				
	7.2	The Challenge of Longevity for Direct Skeletal Attachment	131				
		7.2.1 Longevity of Skin–Implant Seal	132				
		7.2.2 Longevity of the Bone-Implant Bond	133				
	7.3.		136				
	7.4.	Recommendations for Prosthesis's Design	137				
	7.5	Biomechanical Aspects of DSA: Conclusions	137				
	Conclusion						
	Refe	erences	138				
In	dex		141				