
https://www.pearson.de/9780132100694


Photo credit: © Jerry Markatos

ABOUT THE AUTHOR
Frederick P. Brooks, Jr., is Kenan Professor of Computer Science
at the University of North Carolina at Chapel Hill. He is best
known as the "father of the IBM System/360/' having served as
project manager for its development and later as manager of the
Operating System/360 software project during its design phase.
For this work he, Bob Evans, and Erich Bloch were awarded the
National Medal of Technology in 1985. Earlier, he was an archi-
tect of the IBM Stretch and Harvest computers.

At Chapel Hill, Dr. Brooks founded the Department of Com-
puter Science and chaired it from 1964 through 1984. He has
served on the National Science Board and the Defense Science
Board. His current teaching and research is in computer archi-
tecture, molecular graphics, and virtual environments.

https://www.pearson.de/9780132100694


8
Calling the Shot

Practice is the best of all instructors.

PUBLIUUS

Experience is a dear teacher, but fools will learn at no
other.

POOR RICHARD'S ALMANAC

Douglass Crockwell, "Ruth calls his shot/' World Series, 1932
Reproduced by permission of Esquire Magazine and Douglass Crockwell, © 1945
(renewed 1973) by Esquire, Inc., and courtesy of the National Baseball Museum.

87

https://www.pearson.de/9780132100694


88 Calling the Shot

How long will a system programming job take? How much effort
will be required? How does one estimate?

I have earlier suggested ratios that seem to apply to planning
time, coding, component test, and system test. First, one must say
that one does not estimate the entire task by estimating the coding
portion only and then applying the ratios. The coding is only
one-sixth or so of the problem, and errors in its estimate or in the
ratios could lead to ridiculous'results.

Second, one must say that data for building isolated small
programs are not applicable to programming systems products. For
a program averaging about 3200 words, for example, Sackman,
Erikson, and Grant report an average code-plus-debug time of
about 178 hours for a single programmer, a figure which would
extrapolate to give an annual productivity of 35,800 statements
per year. A program half that size took less than one-fourth as
long, and extrapolated productivity is almost 80,000 statements
per year.1 Planning, documentation, testing, system integration,
and training times must be added. The linear extrapolation of such
sprint figures is meaningless. Extrapolation of times for the hun-
dred-yard dash shows that a man can run a mile in under three
minutes.

Before dismissing them, however, let us note that these num-
bers, although not for strictly comparable problems, suggest that
effort goes as a power of size even when no communication is
involved except that of a man with his memories.

Figure 8.1 tells the sad story. It illustrates results reported from
a study done by Nanus and Farr2 at System Development Corpo-
ration. This shows an exponent of 1.5; that is,

effort = (constant) X (number of instructions)1-5.

Another SDC study reported by Weinwurm3 also shows an expo-
nent near 1.5.

A few studies on programmer productivity have been made,
and several estimating techniques have been proposed. Morin has
prepared a survey of the published data.4 Here I shall give only a
few items that seem especially illuminating.

https://www.pearson.de/9780132100694


Portman's Data 89

Fig. 8.1 Programming effort as a function of program size

Portman's Data

Charles Portman, manager of ICL's Software Division, Computer
Equipment Organization (Northwest) at Manchester, offers an-
other useful personal insight.5

He found his programming teams missing schedules by about
one-half—each job was taking approximately twice as long as
estimated. The estimates were very careful, done by experienced
teams estimating man-hours for several hundred subtasks on a
PERT chart. When the slippage pattern appeared, he asked them
to keep careful daily logs of time usage. These showed that the
estimating error could be entirely accounted for by the fact that
his teams were only realizing 50 percent of the working week as
actual programming and debugging time. Machine downtime,
higher-priority short unrelated jobs, meetings, paperwork, com-

https://www.pearson.de/9780132100694


90 Calling the Shot

pany business, sickness, personal time, etc. accounted for the rest.
In short, the estimates made an unrealistic assumption about the
number of technical work hours per man-year. My own experi-
ence quite confirms his conclusion.6

Aron's Data

Joel Aron, manager of Systems Technology at IBM in Gaithers-
burg, Maryland, has studied programmer productivity when
working on nine large systems (briefly, large means more than 25
programmers and 30,000 deliverable instructions).7 He divides
such systems according to interactions among programmers (and
system parts) and finds productivities as follows:

Very few interactions 10,000 instructions per man-year
Some interactions 5,000
Many interactions 1,500

The man-years do not include support and system test activi-
ties, only design and programming. When these figures are diluted
by a factor of two to cover system test, they closely match Hair's
data.

Harr's Data

John Harr, manager of programming for the Bell Telephone Labo-
ratories' Electronic Switching System, reported his and others'
experience in a paper at the 1969 Spring Joint Computer Confer-
ence.8 These data are shown in Figs. 8.2, 8.3, and 8.4.

Of these, Fig. 8.2 is the most detailed and the most useful. The
first two jobs are basically control programs; the second two are
basically language translators. Productivity is stated in terms of
debugged words per man-year. This includes programming, com-
ponent test, and system test. It is not clear how much of the
planning effort, or effort in machine support, writing, and the like,
is included.

https://www.pearson.de/9780132100694


Harr's Data 91

Fig. 8.2 Summary of four No. 1 ESS program jobs

The productivities likewise fall into two classifications; those
for control programs are about 600 words per man-year; those for
translators are about 2200 words per man-year. Note that all four
programs are of similar size—the variation is in size of the work
groups, length of time, and number of modules. Which is cause
and which is effect? Did the control programs require more people
because they were more complicated? Or did they require more
modules and more man-months because they were assigned more
people? Did they take longer because of the greater complexity,
or because more people were assigned? One can't be sure. The
control programs were surely more complex. These uncertainties
aside, the numbers describe the real productivities achieved on a
large system, using present-day programming techniques. As such
they are a real contribution.

Figures 8.3 and 8.4 show some interesting data on program-
ming and debugging rates as compared to predicted rates.

https://www.pearson.de/9780132100694


92 Calling the Shot

Fig. 8.4 ESS predicted and actual debugging rates

Fig. 8.3 ESS predicted and actual programming rates

https://www.pearson.de/9780132100694

