
GLOBAL

EDITION

https://www.pearson.de/9781292401171

Artificial Intelligence
A Modern Approach

Fourth Edition

Global Edition

https://www.pearson.de/9781292401171

Section 10.5 Reasoning Systems for Categories 349

Reification of propositions makes it possible to represent every ground, function-free

atomic sentence of first-order logic in the semantic network notation. Certain kinds of univer-

sally quantified sentences can be asserted using inverse links and the singly boxed and doubly

boxed arrows applied to categories, but that still leaves us a long way short of full first-order

logic. Negation, disjunction, nested function symbols, and existential quantification are all

missing. Now it is possible to extend the notation to make it equivalent to first-order logic—as

in Peirce’s existential graphs—but doing so negates one of the main advantages of semantic

networks, which is the simplicity and transparency of the inference processes. Designers can

build a large network and still have a good idea about what queries will be efficient, because

(a) it is easy to visualize the steps that the inference procedure will go through and (b) in

some cases the query language is so simple that difficult queries cannot be posed.

In cases where the expressive power proves to be too limiting, many semantic network

systems provide for procedural attachment to fill in the gaps. Procedural attachment is a Procedural
attachment

technique whereby a query about (or sometimes an assertion of) a certain relation results in a

call to a special procedure designed for that relation rather than a general inference algorithm.

One of the most important aspects of semantic networks is their ability to represent de-

fault values for categories. Examining Figure 10.4 carefully, one notices that John has one Default value

leg, despite the fact that he is a person and all persons have two legs. In a strictly logical KB,

this would be a contradiction, but in a semantic network, the assertion that all persons have

two legs has only default status; that is, a person is assumed to have two legs unless this is

contradicted by more specific information. The default semantics is enforced naturally by the

inheritance algorithm, because it follows links upwards from the object itself (John in this

case) and stops as soon as it finds a value. We say that the default is overridden by the more Overriding

specific value. Notice that we could also override the default number of legs by creating a

category of OneLeggedPersons, a subset of Persons of which John is a member.

We can retain a strictly logical semantics for the network if we say that the Legs assertion

for Persons includes an exception for John:

∀x x∈Persons∧ x 6= John ⇒ Legs(x,2) .

For a fixed network, this is semantically adequate but will be much less concise than the

network notation itself if there are lots of exceptions. For a network that will be updated with

more assertions, however, such an approach fails—we really want to say that any persons as

yet unknown with one leg are exceptions too. Section 10.6 goes into more depth on this issue

and on default reasoning in general.

10.5.2 Description logics

The syntax of first-order logic is designed to make it easy to say things about objects. De-

scription logics are notations that are designed to make it easier to describe definitions and Description logic

properties of categories. Description logic systems evolved from semantic networks in re-

sponse to pressure to formalize what the networks mean while retaining the emphasis on

taxonomic structure as an organizing principle.

The principal inference tasks for description logics are subsumption (checking if one Subsumption

category is a subset of another by comparing their definitions) and classification (checking Classification

whether an object belongs to a category). Some systems also include consistency of a cate- Consistency

gory definition—whether the membership criteria are logically satisfiable.

https://www.pearson.de/9781292401171

350 Chapter 10 Knowledge Representation

Concept → Thing | ConceptName

| And(Concept, . . .)

| All(RoleName,Concept)

| AtLeast(Integer,RoleName)

| AtMost(Integer,RoleName)

| Fills(RoleName, IndividualName, . . .)

| SameAs(Path,Path)

| OneOf(IndividualName, . . .)

Path → [RoleName, . . .]

ConceptName → Adult | Female | Male | . . .

RoleName → Spouse | Daughter | Son | . . .

Figure 10.6 The syntax of descriptions in a subset of the CLASSIC language.

The CLASSIC language (Borgida et al., 1989) is a typical description logic. The syntax

of CLASSIC descriptions is shown in Figure 10.6.6 For example, to say that bachelors are

unmarried adult males we would write

Bachelor = And(Unmarried,Adult,Male) .

The equivalent in first-order logic would be

Bachelor(x) ⇔ Unmarried(x)∧Adult(x)∧Male(x) .

Notice that the description logic has an algebra of operations on predicates, which of course

we can’t do in first-order logic. Any description in CLASSIC can be translated into an equiv-

alent first-order sentence, but some descriptions are more straightforward in CLASSIC. For

example, to describe the set of men with at least three sons who are all unemployed and

married to doctors, and at most two daughters who are all professors in physics or math

departments, we would use

And(Man,AtLeast(3,Son),AtMost(2,Daughter),
All(Son,And(Unemployed,Married,All(Spouse,Doctor))),
All(Daughter,And(Professor,Fills(Department,Physics,Math)))) .

We leave it as an exercise to translate this into first-order logic.

Perhaps the most important aspect of description logics is their emphasis on tractability of

inference. A problem instance is solved by describing it and then asking if it is subsumed by

one of several possible solution categories. In standard first-order logic systems, predicting

the solution time is often impossible. It is frequently left to the user to engineer the represen-

tation to detour around sets of sentences that seem to be causing the system to take several

6 Notice that the language does not allow one to simply state that one concept, or category, is a subset of

another. This is a deliberate policy: subsumption between categories must be derivable from some aspects of the

descriptions of the categories. If not, then something is missing from the descriptions.

https://www.pearson.de/9781292401171

Section 10.6 Reasoning with Default Information 351

weeks to solve a problem. The thrust in description logics, on the other hand, is to ensure that

subsumption-testing can be solved in time polynomial in the size of the descriptions.7

This sounds wonderful in principle, until one realizes that it can only have one of two

consequences: either hard problems cannot be stated at all, or they require exponentially

large descriptions! However, the tractability results do shed light on what sorts of constructs

cause problems and thus help the user to understand how different representations behave.

For example, description logics usually lack negation and disjunction. Each forces first-

order logical systems to go through a potentially exponential case analysis in order to ensure

completeness. CLASSIC allows only a limited form of disjunction in the Fills and OneOf

constructs, which permit disjunction over explicitly enumerated individuals but not over de-

scriptions. With disjunctive descriptions, nested definitions can lead easily to an exponential

number of alternative routes by which one category can subsume another.

10.6 Reasoning with Default Information

In the preceding section, we saw a simple example of an assertion with default status: people

have two legs. This default can be overridden by more specific information, such as that

Long John Silver has one leg. We saw that the inheritance mechanism in semantic networks

implements the overriding of defaults in a simple and natural way. In this section, we study

defaults more generally, with a view toward understanding the semantics of defaults rather

than just providing a procedural mechanism.

10.6.1 Circumscription and default logic

We have seen two examples of reasoning processes that violate the monotonicity property of Monotonicity

logic that was proved in Chapter 7.8 In this chapter we saw that a property inherited by all

members of a category in a semantic network could be overridden by more specific informa-

tion for a subcategory. In Section 9.4.4, we saw that under the closed-world assumption, if a

proposition α is not mentioned in KB then KB |= ¬α, but KB∧α |= α.

Simple introspection suggests that these failures of monotonicity are widespread in com-

monsense reasoning. It seems that humans often “jump to conclusions.” For example, when

one sees a car parked on the street, one is normally willing to believe that it has four wheels

even though only three are visible. Now, probability theory can certainly provide a conclusion

that the fourth wheel exists with high probability; yet, for most people, the possibility that the

car does not have four wheels will not arise unless some new evidence presents itself. Thus,

it seems that the four-wheel conclusion is reached by default, in the absence of any reason to

doubt it. If new evidence arrives—for example, if one sees the owner carrying a wheel and

notices that the car is jacked up—then the conclusion can be retracted. This kind of reasoning

is said to exhibit nonmonotonicity, because the set of beliefs does not grow monotonically Nonmonotonicity

over time as new evidence arrives. Nonmonotonic logics have been devised with modified Nonmonotonic logic

notions of truth and entailment in order to capture such behavior. We will look at two such

logics that have been studied extensively: circumscription and default logic.

Circumscription can be seen as a more powerful and precise version of the closed-world Circumscription

7 CLASSIC provides efficient subsumption testing in practice, but the worst-case run time is exponential.
8 Recall that monotonicity requires all entailed sentences to remain entailed after new sentences are added to the

KB. That is, if KB |= α then KB∧β |= α.

https://www.pearson.de/9781292401171

352 Chapter 10 Knowledge Representation

assumption. The idea is to specify particular predicates that are assumed to be “as false as

possible”—that is, false for every object except those for which they are known to be true.

For example, suppose we want to assert the default rule that birds fly. We would introduce a

predicate, say Abnormal1(x), and write

Bird(x)∧¬Abnormal1(x) ⇒ Flies(x) .

If we say that Abnormal1 is to be circumscribed, a circumscriptive reasoner is entitled to

assume ¬Abnormal1(x) unless Abnormal1(x) is known to be true. This allows the conclusion

Flies(Tweety) to be drawn from the premise Bird(Tweety), but the conclusion no longer holds

if Abnormal1(Tweety) is asserted.

Circumscription can be viewed as an example of a model preference logic. In suchModel preference

logics, a sentence is entailed (with default status) if it is true in all preferred models of the KB,

as opposed to the requirement of truth in all models in classical logic. For circumscription,

one model is preferred to another if it has fewer abnormal objects.9 Let us see how this idea

works in the context of multiple inheritance in semantic networks. The standard example for

which multiple inheritance is problematic is called the “Nixon diamond.” It arises from the

observation that Richard Nixon was both a Quaker (and hence by default a pacifist) and a

Republican (and hence by default not a pacifist). We can write this as follows:

Republican(Nixon)∧Quaker(Nixon) .
Republican(x)∧¬Abnormal2(x) ⇒ ¬Pacifist(x) .
Quaker(x)∧¬Abnormal3(x) ⇒ Pacifist(x) .

If we circumscribe Abnormal2 and Abnormal3, there are two preferred models: one in which

Abnormal2(Nixon) and Pacifist(Nixon) are true and one in which Abnormal3(Nixon) and

¬Pacifist(Nixon) are true. Thus, the circumscriptive reasoner remains properly agnostic as

to whether Nixon was a pacifist. If we wish, in addition, to assert that religious beliefs take

precedence over political beliefs, we can use a formalism called prioritized circumscriptionPrioritized
circumscription

to give preference to models where Abnormal3 is minimized.

Default logic is a formalism in which default rules can be written to generate contingent,Default logic

Default rules nonmonotonic conclusions. A default rule looks like this:

Bird(x) : Flies(x)/Flies(x) .

This rule means that if Bird(x) is true, and if Flies(x) is consistent with the knowledge base,

then Flies(x) may be concluded by default. In general, a default rule has the form

P : J1, . . . ,Jn/C

where P is called the prerequisite, C is the conclusion, and Ji are the justifications—if any one

of them can be proven false, then the conclusion cannot be drawn. Any variable that appears

in Ji or C must also appear in P. The Nixon-diamond example can be represented in default

logic with one fact and two default rules:

Republican(Nixon)∧Quaker(Nixon) .
Republican(x) : ¬Pacifist(x)/¬Pacifist(x) .
Quaker(x) : Pacifist(x)/Pacifist(x) .

9 For the closed-world assumption, one model is preferred to another if it has fewer true atoms—that is, preferred

models are minimal models. There is a natural connection between the closed-world assumption and definite-

clause KBs, because the fixed point reached by forward chaining on definite-clause KBs is the unique minimal

model. See page 249 for more on this point.

https://www.pearson.de/9781292401171

Section 10.6 Reasoning with Default Information 353

To interpret what the default rules mean, we define the notion of an extension of a default Extension

theory to be a maximal set of consequences of the theory. That is, an extension S consists

of the original known facts and a set of conclusions from the default rules, such that no

additional conclusions can be drawn from S, and the justifications of every default conclusion

in S are consistent with S. As in the case of the preferred models in circumscription, we have

two possible extensions for the Nixon diamond: one wherein he is a pacifist and one wherein

he is not. Prioritized schemes exist in which some default rules can be given precedence over

others, allowing some ambiguities to be resolved.

Since 1980, when nonmonotonic logics were first proposed, a great deal of progress

has been made in understanding their mathematical properties. There are still unresolved

questions, however. For example, if “Cars have four wheels” is false, what does it mean to

have it in one’s knowledge base? What is a good set of default rules to have? If we cannot

decide, for each rule separately, whether it belongs in our knowledge base, then we have a

serious problem of nonmodularity. Finally, how can beliefs that have default status be used

to make decisions? This is probably the hardest issue for default reasoning.

Decisions often involve tradeoffs, and one therefore needs to compare the strengths of be-

lief in the outcomes of different actions, and the costs of making a wrong decision. In cases

where the same kinds of decisions are being made repeatedly, it is possible to interpret default

rules as “threshold probability” statements. For example, the default rule “My brakes are al-

ways OK” really means “The probability that my brakes are OK, given no other information,

is sufficiently high that the optimal decision is for me to drive without checking them.” When

the decision context changes—for example, when one is driving a heavily laden truck down a

steep mountain road—the default rule suddenly becomes inappropriate, even though there is

no new evidence of faulty brakes. These considerations have led researchers to consider how

to embed default reasoning within probability theory or utility theory.

10.6.2 Truth maintenance systems

We have seen that many of the inferences drawn by a knowledge representation system will

have only default status, rather than being absolutely certain. Inevitably, some of these in-

ferred facts will turn out to be wrong and will have to be retracted in the face of new infor-

mation. This process is called belief revision.10 Suppose that a knowledge base KB contains Belief revision

a sentence P—perhaps a default conclusion recorded by a forward-chaining algorithm, or

perhaps just an incorrect assertion—and we want to execute TELL(KB, ¬P). To avoid cre-

ating a contradiction, we must first execute RETRACT(KB, P). This sounds easy enough.

Problems arise, however, if any additional sentences were inferred from P and asserted in

the KB. For example, the implication P ⇒ Q might have been used to add Q. The obvious

“solution”—retracting all sentences inferred from P—fails because such sentences may have

other justifications besides P. For example, if R and R ⇒ Q are also in the KB, then Q does

not have to be removed after all. Truth maintenance systems, or TMSs, are designed to Truth maintenance
system

handle exactly these kinds of complications.

One simple approach to truth maintenance is to keep track of the order in which sen-

tences are told to the knowledge base by numbering them from P1 to Pn. When the call

10 Belief revision is often contrasted with belief update, which occurs when a knowledge base is revised to reflect

a change in the world rather than new information about a fixed world. Belief update combines belief revision

with reasoning about time and change; it is also related to the process of filtering described in Chapter 14.

https://www.pearson.de/9781292401171

354 Chapter 10 Knowledge Representation

RETRACT(KB, Pi) is made, the system reverts to the state just before Pi was added, thereby

removing both Pi and any inferences that were derived from Pi. The sentences Pi+1 through

Pn can then be added again. This is simple, and it guarantees that the knowledge base will

be consistent, but retracting Pi requires retracting and reasserting n− i sentences as well as

undoing and redoing all the inferences drawn from those sentences. For systems to which

many facts are being added—such as large commercial databases—this is impractical.

A more efficient approach is the justification-based truth maintenance system, or JTMS.JTMS

In a JTMS, each sentence in the knowledge base is annotated with a justification consistingJustification

of the set of sentences from which it was inferred. For example, if the knowledge base already

contains P ⇒ Q, then TELL(P) will cause Q to be added with the justification {P, P ⇒ Q}.

In general, a sentence can have any number of justifications. Justifications make retraction

efficient. Given the call RETRACT(P), the JTMS will delete exactly those sentences for

which P is a member of every justification. So, if a sentence Q had the single justification

{P, P ⇒ Q}, it would be removed; if it had the additional justification {P, P∨R ⇒ Q}, it

would still be removed; but if it also had the justification {R, P∨R ⇒ Q}, then it would

be spared. In this way, the time required for retraction of P depends only on the number of

sentences derived from P rather than on the number of sentences added after P.

The JTMS assumes that sentences that are considered once will probably be considered

again, so rather than deleting a sentence from the knowledge base entirely when it loses

all justifications, we merely mark the sentence as being out of the knowledge base. If a

subsequent assertion restores one of the justifications, then we mark the sentence as being

back in. In this way, the JTMS retains all the inference chains that it uses and need not

rederive sentences when a justification becomes valid again.

In addition to handling the retraction of incorrect information, TMSs can be used to

speed up the analysis of multiple hypothetical situations. Suppose, for example, that the

Romanian Olympic Committee is choosing sites for the swimming, athletics, and equestrian

events at the 2048 Games to be held in Romania. For example, let the first hypothesis be

Site(Swimming,Pitesti), Site(Athletics,Bucharest), and Site(Equestrian,Arad).
A great deal of reasoning must then be done to work out the logistical consequences

and hence the desirability of this selection. If we want to consider Site(Athletics,Sibiu)
instead, the TMS avoids the need to start again from scratch. Instead, we simply retract

Site(Athletics,Bucharest) and assert Site(Athletics,Sibiu) and the TMS takes care of the nec-

essary revisions. Inference chains generated from the choice of Bucharest can be reused with

Sibiu, provided that the conclusions are the same.

An assumption-based truth maintenance system, or ATMS, makes this type of context-ATMS

switching between hypothetical worlds particularly efficient. In a JTMS, the maintenance of

justifications allows you to move quickly from one state to another by making a few retrac-

tions and assertions, but at any time only one state is represented. An ATMS represents all the

states that have ever been considered at the same time. Whereas a JTMS simply labels each

sentence as being in or out, an ATMS keeps track, for each sentence, of which assumptions

would cause the sentence to be true. In other words, each sentence has a label that consists of

a set of assumption sets. The sentence is true just in those cases in which all the assumptions

in one of the assumption sets are true.

Truth maintenance systems also provide a mechanism for generating explanations. Tech-Explanation

nically, an explanation of a sentence P is a set of sentences E such that E entails P. If the

https://www.pearson.de/9781292401171

