Table of Contents

Summary	VI
ZUSAMMENFASSUNG	VII
LIST OF ABBREVIATIONS	X
CHAPTER 1: INTRODUCTION	
1.1 GENERAL INTRODUCTION	
1.2 FLAVIN-DEPENDENT MONOOXYGENASES	
1.2.1 One-component flavin-dependent monooxygenases	
1.2.2 Two-component flavin-dependent monooxygenases	
1.3 COFACTOR REGENERATION	
1.4 OPERATIONAL WINDOWS OF ELECTROENZYMATIC PROCESSES	
1.5 EVALUATION OF PROMISING ELECTROENZYMATIC PROCESSES WITH SYNTHETIC POTENTIAL	15
1.6 PARAMETERS THAT LIMIT THE PERFORMANCE OF ELECTROENZYMATIC PROCESSES AND PROMISE	
DEVELOPMENTS IN REACTION ENGINEERING	
1.7 CONCLUDING REMARKS AND FUTURE PROSPECTS	
1.8 SCOPE OF THE THESIS	25
CHAPTER 2: DEVELOPMENT OF A HIGH PERFORMANCE ELECTROCHEMICAL COFACTOR REGENE.	RATION
MODULE AND ITS APPLICATION TO THE CONTINUOUS REDUCTION OF FAD	
CHAPTER 3: PRODUCTIVE ASYMMETRIC STYRENE EPOXIDATION BASED ON A NEXT GENERATION	
ELECTROENZYMATIC METHODOLOGY	
CHAPTER 4: INTEGRATED ONE-POT ENRICHMENT AND IMMOBILIZATION OF STYRENE MONOOXYO	GENASE
(STYA) Using Sepabead EC-EA and EC-Q1A Anion-Exchange Carriers	67
CHAPTER 5: CATALYST DESIGN AND CHARACTERIZATION FOR CELL-FREE EPOXIDATIONS BASED	ON
STYRENE MONOOXYGENASE (STYA) IMMOBILIZED ON SEPABEADS EC-EP	
, , , , , , , , , , , , , , , , , , , ,	

CHAPTER 6: SYNTHESIS AND EVALUATION OF 5-DEAZA FLAVIN ADENINE DINUCLEOTIDE AS AN ARTIFICIAL	
COFACTOR FOR THE TWO-COMPONENT STYRENE MONOOXYGENASE STYAB105	
HAPTER 7: CONCLUDING REMARKS AND OUTLOOK125	
.1 STATE OF THE ART IN ELECTROENZYMATIC SYNTHESIS PERFORMANCE AND REACTOR ENGINEERING126	
2 FACTORS INFLUENCING ELECTROCHEMICAL COFACTOR REGENERATION RATES	
3 DEVELOPMENT OF A NOVEL, PRODUCTIVE AND SCALABLE ELECTROENZYMATIC REACTOR CONCEPT129	
4 ELECTROENZYMATIC SYNTHESIS OF (S)-STYRENE OXIDE USING THE DEVELOPED COFACTOR REGENERATION	
CONCEPT132	
5 EXPLOITATION OF THE CATALYTIC PROPERTIES OF IMMOBILIZED STYA	
7.5.1 Adsorptive immobilization of StyA on Sepabeads EC-EA and EC-Q1A139	
7.5.2 Covalent immobilization of StyA on Sepabeads EC-EP	
6 CHALLENGING THE "OXYGEN DILEMMA" USING AN ARTIFICIAL COFACTOR143	
7 OUTLOOK145	
EFERENCES	
URRICULUM VITAE	