Contents

Preface XV
List of Contributors XVII

The Scope and Impact of Industrial Biotechnology 1
Wim Soetaert and Erick J. Vandamme

1 History of Industrial Biotechnology 17
Arnold L. Demain
1.1 Early History 17
1.2 The Penicillin Story 22
1.3 The Coming of the Cephalosporins 29
1.4 The Waksman Era 31
1.5 Strain Improvement 33
1.6 Semi-Synthetic Antibiotics to Combat Resistant Microbes 35
1.7 The Primary Metabolites 36
1.7.1 Amino Acids 36
1.7.2 Nucleotides 39
1.7.3 Vitamins 39
1.7.4 Organic Acids 41
1.7.5 Alcohols 43
1.7.6 Polymers 45
1.7.7 Specialty Sugars, Sugar Alcohols, L-Sugars, Oligosugars, Novel Extracellular Polysaccharides, Biopigments, Cosmetics Including Fragrants, and Microbial Enzymes for Chiral Synthesis and Other Applications 46
1.8 The Shift from Antibiotics to Pharmacological Agents 46
1.8.1 Enzyme Inhibitors 47
1.8.2 Immunosuppressants 49
1.8.3 Antitumor Agents 51
1.8.4 Ergot Alkaloids 51
1.8.5 Agricultural Compounds 51
1.9 The Biopharmaceutical Revolution 53
2.8 Conclusion and Future Perspectives 131
References 134

3 Fermentation Technology 149
Yusuf Chisti
3.1 Introduction 149
3.2 Types of Fermentations 149
3.3 Fermentation Process 150
3.3.1 Inoculum Generation 151
3.3.2 Growth and Product Formation 152
3.4 Fermentation Medium Design 154
3.5 Sterilization of Air and Fermentation Medium 155
3.6 Environmental Factors 156
3.7 Fermentation Kinetics 157
3.7.1 Batch Fermentation 157
3.7.2 Continuous Culture 158
3.8 Fermentation Equipment 159
3.8.1 Submerged Fermentation 159
3.8.1.1 Stirred Tank Fermenter 159
3.8.1.2 Bubble Column 159
3.8.1.3 Airlift Fermenters 160
3.8.1.4 Fluidized Bed Fermenter 160
3.8.1.5 Trickle-Bed Fermenter 161
3.8.2 Solid-State Fermentation 165
3.8.2.1 Tray Fermenter 165
3.8.2.2 Static Bed Fermenter 167
3.8.2.3 Tunnel Fermenter 167
3.8.2.4 Rotary Disk Fermenter 168
3.8.2.5 Rotary Drum Fermenter 168
3.8.2.6 Agitated Tank Fermenter 168
3.8.2.7 Continuous Screw Fermenter 168
3.9 Recovery of Fermentation Products 169
3.10 Concluding Remarks 170
References 170

4 Directed Evolution of Industrial Biocatalysts 173
Marlen Schmidt, Dominique Böttcher, and Uwe T. Bornscheuer
4.1 Introduction 173
4.2 Strategies for Protein Design 174
4.2.1 Rational Protein Design 174
4.2.2 Directed Evolution 175
4.2.2.1 Mutagenesis Methods 175
4.2.3 Focused Directed Evolution 178
4.3 Assay Systems 179
4.3.1 Selection 180
5 The Industrial Production of Enzymes 207
Reeta Rani Singhania, Anil Kumar Patel, and Ashok Pandey
5.1 Introduction 207
5.2 Enzyme Production 208
5.2.1 Selection of a Suitable Enzyme 209
5.2.2 Selection of a Suitable Production Strain 209
5.2.3 Production Methodology 210
5.2.3.1 Submerged Fermentation 210
5.2.3.2 Solid-State Fermentation 211
5.2.4 Downstream Processing 212
5.3 Enzyme Improvement 213
5.3.1 Recombinant DNA Technology 214
5.3.2 Protein Engineering 215
5.4 Large-Scale Enzyme Applications 216
5.4.1 Detergents 216
5.4.2 Food Industry 218
5.4.2.1 Baking 218
5.4.2.2 Starch Hydrolysis and Fructose Production 218
5.4.2.3 Drinks and Diary 219
5.4.3 Animal Feed 219
5.4.4 Textiles 220
5.4.5 Pulp and Paper 220
5.4.6 Leather 221
5.4.7 Biofuel from Biomass 221
5.4.8 Enzyme Applications in the Chemistry and Pharma Sectors 221
5.4.9 Specialty Enzymes 222
5.4.10 Enzymes in Personal Care Products 222
5.4.11 Enzymes in DNA Technology 222
5.5 Conclusions 223
References 224
6 Applied Biocatalysis: An Overview 227

Pedro Fernandes and Joaquim M.S. Cabral

6.1 Introduction 227

6.2 The Design of the Bioconversion System 229

6.2.1 The Biocatalyst 229

6.2.1.1 Selection 229

6.2.1.2 Whole Cells or Isolated Enzymes? 230

6.2.1.3 Immobilization of Biocatalysts 232

6.2.2 The Bioconversion Medium 237

6.2.2.1 Organic Solvents 237

6.2.2.2 Ionic Liquids 240

6.2.2.3 Two-Phase Aqueous Systems 241

6.2.2.4 Solid Resins 241

6.2.2.5 Solid-Gas Systems 242

6.2.2.6 Supercritical Fluids 242

6.3 Bioreactors 243

6.3.1 Batch Reactors 243

6.3.2 Fed-Batch Reactors 243

6.3.3 Continuous Reactors 244

6.4 Rationalizing and Speeding up the Development and Characterization of a Bioconversion Process 244

6.4.1 Computational Methods 245

6.4.2 Microscale Processing Methods 245

6.5 Concluding Remarks 246

Acknowledgments 247

References 247

7 Nanobiotechnology 251

Rudy J. Koopmans

7.1 Setting the Stage 251

7.2 Industrial Perspective 252

7.3 Nanotechnology in Biology and Biochemistry 253

7.4 Biomimicry 254

7.4.1 Silk Fibers 255

7.4.2 Gecko Adhesives 257

7.4.3 Nacre and Biomineralization 258

7.5 Materials and Products 259

7.5.1 Peptides and Proteins 259

7.5.1.1 Self-Assembling Peptide and Protein Applications 260

7.5.1.2 Antimicrobial Peptides 261

7.5.1.3 Antifreeze Proteins 261

7.5.1.4 Biosynthetic Hybrids 262

7.5.2 Polynucleotides 263

7.5.3 Lipids 263

7.5.4 Carbohydrates 265
8 Downstream Processing in Industrial Biotechnology 279

Rajni Hatti-Kaul

8.1 Introduction 279

8.2 Separations in Industrial Biotechnology 281
8.2.1 Separation of Solid Particles 281
8.2.1.1 Filtration 281
8.2.1.2 Microfiltration 283
8.2.1.3 Centrifugation 284
8.2.1.4 Hydrocyclone 286
8.2.1.5 Flotation and Extraction 286
8.2.2 Cell Disruption for Release of Cell-Associated Products 287
8.2.3 Size-Based Separation of Molecules 288
8.2.3.1 Membrane Filtration 288
8.2.3.2 Size Exclusion Chromatography 292
8.2.4 Separations Based on Product Volatility 292
8.2.4.1 Distillation 293
8.2.4.2 Gas Stripping 293
8.2.4.3 Membrane Distillation and Pervaporation 293
8.2.5 Separations Based on Product Solubility 295
8.2.5.1 Extraction 295
8.2.5.2 Precipitation and Crystallization 299
8.2.6 Molecular Separations Based on Adsorption to a Solid Matrix 301
8.2.6.1 Adsorption Chromatography 304
8.2.6.2 Continuous Chromatography 307
8.2.7 Molecularly Imprinted Materials for Selective Product Capture 309
8.2.8 Membrane Separation of Ionic Solutes: Electrodialysis 310
8.2.9 Chiral Separations Using Membranes 310
8.2.10 Drying/Solvent Removal 311
8.3 Examples of Downstream Processing of Different Product Groups 312
8.3.1 Alcohols 312
8.3.2 Organic Acids 313
8.3.3 Amino Acids 315
8.3.4 Enzymes and Proteins/Peptides 316
8.3.5 Antibiotics 317
8.3.6 Carotenoids 317
8.3.7 Biosurfactants 318
8.3.8 Polyhydroxyalkanoates 318
Acknowledgments 318
References 319

9 Industrial Biotechnology in the Chemical and Pharmaceutical Industries 323
Maurice C.R. Franssen, Manfred Kircher, and Roland Wohlgemuth

9.1 Introduction 323
9.2 Biocatalytic Processes: Scientific and Technological Perspectives 324
9.2.1 Beta-Lactam Antibiotics 324
9.2.1.1 The Nucleus 324
9.2.1.2 The Side-Chains 325
9.2.1.3 Enzymatic Semi-Synthesis 327
9.2.2 Chiral Building Blocks 327
9.2.3 Building Blocks for Polymers 328
9.2.4 Fine Chemicals: Statins 330
9.2.5 Amino Acids 334
9.2.6 Indigotin 336
9.3 Biocatalytic Processes: Business and Commercial Perspective 338
9.4 Safety, Health, and the Environmental Perspective 341
9.5 Outlook 342
Acknowledgments 348
References 348

10 Industrial Biotechnology in the Food and Feed Sector 351
Pierre Monsan and Michael J. O’Donohue

10.1 Introduction 351
10.2 Food Applications 352
10.2.1 Starch Transformation 352
10.2.2 Dairy Industry 353
10.2.2.1 Milk-Clotting Enzymes 354
10.2.2.2 Cheese Ripening and Flavor 355
10.2.2.3 Lipase 355
10.2.2.4 Proteases 355
10.2.2.5 Lysozyme 355
10.2.2.6 Transglutaminase 355
10.2.2.7 β-Galactosidase 355
10.2.3 Baking Industry 356
10.2.3.1 Amylases 356
10.2.3.2 Xylanases 357
10.2.3.3 Oxidases 357
10.2.3.4 Phospholipase 358
10.2.3.5 Dextranucrase 358
10.2.4 Beer-Making Industry 358
11 Industrial Biotechnology in the Paper and Pulp Sector 385
Liisa Viikari, Stina Grönlund, Kristiina Kruus, Jaakko Pere, Matti Siika-aho, and Anna Suurnäkki

11.1 Introduction 385
11.2 Enzymes for the Pulp and Paper Industry 387
11.2.1 Cellulases 388
11.2.2 Hemicellulases 389
11.2.3 Transferases 390
11.2.4 Lignin-Modifying, Oxidative Enzymes 390
11.2.4.1 Peroxidases 391
11.2.4.2 Laccases 392
11.3 Enzymes as Process Aids 392
11.3.1 Pulping 393
11.3.1.1 Chemical Pulping 393
11.3.1.2 Mechanical Pulping 395
11.3.2 Bleaching 396
11.3.2.1 Xylanase-Aided Bleaching 397
11.3.2.2 Delignifying Laccase-Mediator System for Direct Bleaching 398
11.3.3 Paper Making 399
11.3.4 Recycled Paper and Deinking 400
11.3.5 Slime Control 401
11.3.6 Other Applications 401
11.4 Enzymes for Product Design 401
11.4.1 Enzymatic Fiber Engineering 401
11.4.2 Functionalized, Value-Added Fibers 402
12 Biofuels: Production and Applications 413
 Alexandre Rojey and Frédéric Monot
12.1 A Renewed Interest in Biofuels 413
12.2 Present Conversion Pathways 413
12.3 Biodiesel Production from Vegetable Oils and Fats 416
12.3.1 Esterification Processes 416
12.3.2 Properties of Vegetable Oil Esters 417
12.3.3 Hydrogenation Processes 418
12.4 Ethanol and ETBE Production 419
12.4.1 Ethanol Production from Sugar and Starch 419
12.4.2 ETBE Production 420
12.4.3 Properties of Ethanol and ETBE 420
12.5 The Need for New Developments 421
12.6 Lignocellulosic Biomass Resources 422
12.7 Production of Ethanol from Lignocellulosic Biomass 422
12.7.1 Overall Conversion Scheme 422
12.7.2 Biomass Pretreatment 423
12.7.3 Enzymatic Hydrolysis 424
12.7.4 Fermentation of Glucose and Pentoses 425
12.8 Production of Biofuels Through the Thermochemical Pathway 425
12.8.1 Present Status 425
12.8.2 Pyrolysis and Torrefaction 426
12.8.3 Production of Synthesis Motor Fuels from Biomass 427
12.9 Biorefineries 428
12.10 Biofuels and Sustainability 429
12.11 Conclusion 430
References 431

13 Environmental and Economic Aspects of Industrial Biotechnology 433
 Barbara G. Hermann, Veronika Dornburg, and Martin K. Patel
13.1 Introduction 433
13.2 Methodology 434
13.2.1 Generic Approach 434
13.2.1.1 Methodological Background 434
13.2.1.2 Process Design of Industrial Biotechnology Routes 435
13.2.1.3 Technology Assumptions for Industrial Biotechnology Routes 435
13.2.1.4 Energy Use 438
13.2.2 Environmental Impacts Methodology 438
13.2.2.1 System Boundaries 439
13.2.2.2 Allocation and System Expansion 440
13.2.2.3 Production of Fermentable Sugar 441