Contents

Preface	XI
---------	----

Prologue I: Synergetic Agents: Classical XIII

Prologue II: Synergetic Agents: Quantum XXIX

Color Plates XLV

Part One Classical Synergetic Agents 1

1	Introduction: In Search for General Principles 3
1.1	Physics: the Laser Paradigm - Self-Organization in Nonequilibrium
	Phase Transitions 4
1.2	Biology: Movement Coordination 7
1.3	Computer Science: Synergetic Computer as Neural Model 9
1.3.1	Synaptic Strengths are Fixed by the Synergetic Computer via v_k 10
1.3.2	v_k Learned by the Synergetic Computer 11
1.3.3	Learning of Synaptic Strengths 12
1.4	Synergetics Second Foundation 13
1.4.1	A Reminder of Jaynes' Principle 13
1.4.2	Application of the Maximum Information (Entropy) Principle to
	Nonequilibrium Systems and in Particular to Nonequilibrium
	Phase Transitions 15
1.5	Concluding Remarks 19
	References 20
2	Multirobot Action 23
2.1	Multirobot Systems and the Free Energy Principle: A Reminder
	of Chapter 1 23
2.2	Action Principle for a Multirobot System 26
2.3	Generation of Order Parameter Fields 27
2.3.1	Opaqueness 28

٧١	Contents	
	2.3.2	Limited Sensory and/or Computer Power 28
	2.4	Expected Final State of Total System 28
	2.5	Determination of Absolute Position 29
	2.6	How Can Robots Use the Information Provided by the Order
		Parameter Field? 30
	2.6.1	No Objects in Plane ("Free Robots") 30
	2.6.2	A Concave Object in Plane 30
	2.6.3	Finite Boundaries 30
	2.6.4	Collective Motion through an Array of Obstacles in a Preferred Direction 31
	2.6.5	More Complicated Robot–Robot Interactions 31
	2.6.6	Formation of Letters? 31
	2.7	What have the Order Parameters ξ (Laser) and V (Robots) in Common? 32
	2.8	Is the Multirobot Potential $V(x)$ an Order Parameter? A Critical
	3.0	Discussion 34 Information Field and Order Parameter Field 35
	2.9 2.10	
	2.10	Robots Minimize their Information: Haken–Levi Principle 36 Non-Newtonian Dynamics 40
	2.10.1	The Nature of Fluctuations 42
	2.10.2	Information in Case of Several Modes of Action 43
	2.12	Probability Distributions and Slaving Principle 43
	2.13	Role of Information in Lévy Flights 45
	2.13.1	Search for Objects 45
	2.13.2	LFG Model in Two Dimensions 47
	2.14	Equations of Motion in the Field of a Superposition
		of Harmonic Potentials 48
	2.14.1	Selection of Potentials 48
	2.14.2	Calculations of the Restriction of Motion Parameters 51
	2.14.2.1	General Derivation of Motion Restrictions 51
	2.14.2.2	Special Derivation of Restrictions of Motion 53
	2.14.3	Equations of Motion 55
	2.14.3.1	Complete Equations 55
	2.14.3.2	Overdamped Motion in 2D 62
	2.15	Calculation of Restrictions from Local Information of Motion 64
	2.15.1	Solution of the Fokker–Planck Equation for a Harmonic Potential 65
	2.15.2	Stationary Solution of Fokker-Planck Equation 65
	2.16	System Information: Expectation Value of Local Information of Individual Agents 69
	2.17	Docking of Robot at Object or Other Robot in Two Dimensions:
	•	Two Versions of a Case Study 76
	2.17.1	The Geometry 76
	2.17.2	Dynamics of Center of Gravity 78
	2.17.2.1	Approach 1 78
	2.17.2.2	Approach 2 79

2.17.3	Collision Avoidance: Circumvention of Obstacle 80
2.17.4	Langevin and Fokker–Planck Equations: Information 80
2.18	Docking of Robot at Object or Other Robot in Two Dimensions. Center of
	Gravity Motion. Approach 3. Survey 82
2.18.1	Requirements on the Sensors 86
2.19	Dynamics of Center of Gravity. Approach 3. Equations of Motion 86
2.20	Docking at an Object or Other Robot in Two Dimensions 90
2.20.1	Orientation 90
2.21	Docking of Robot in Three Dimensions I 92
2.21.1	General approach 92
2.22	Docking of Robot in Three Dimensions II: Equations of Motion,
	Measurement of Position, and Determination of Desired Fixed Point 93
2.23	Overview: Total Equations of Motion in Three Dimensions based on Local Information 99
2.23.1	Equation of Motion of the Centers of Gravity 100
2.23.2	Equation of Rotational Motion of the Approaching Process 101
2.23.3	Complete Information of the Approaching Maneuver
	of Two Robots 102
2.23.4	Equations of Motion of Center of Gravity to a Defined Docking
	Position 102
2.23.5	Equation of Rotational Motion During the Alignment Process 105
2.23.6	Complete Information of the Alignment Maneuver 105
	References 106
3	Multirobot Action II: Extended Configurations 107
3.1	Formation of Two-Dimensional Sheets 107
3.2	Pattern Recognition: Associative Memory 108
3.3	Pattern Recognition and Learning (Optical Arrangement) 108
3.3.1	Other Recognition Tasks 110
3.4	Formation of Buildings 110
3.5	Macroscopic Locomotion and Movement 111
	References 113
Part Two	Quantum Synergetic Agents 115
	Introduction: Molecular Robotics and Quantum Field Theory 115
	,
4	Quantum Theory of Robotic Motion and Chemical Interactions 119
4.1	Coherent Action and Synchronization: the Laser Paradigm 119
4.2	Discussion 123
4.2.1	Coherent States 123
4.2.2	Some General Remarks on Our Methodology 125
4.3	Representations 125
4.3.1	Schrödinger Representation 126
4.3.2	Heisenberg Representation 127

VIII	Contents	
•	4.3.3	Interaction Representation 127
	4.4	Molecules: The Nanolevel 128
	4.5	Molecular Dynamics 132
	4.6	The Explicit Form of the Heisenberg Equations of Motion:
		A "Menu" 137
	4.7	The Complete Heisenberg Equations for the Coupling between a Fermi Field and a Bose Field, Including Damping, Pumping, and Fluctuating Forces 140
	4.8	The Explicit Form of the Correlation Functions of Quantum Mechanical Langevin Forces 142
	4.9	Heisenberg Equations of Motion for $\psi(x)$ 146
	4.10	Solution to the Heisenberg Equation for Operator Wave Functions:
		Wave Packets 148
	4.11	Many-Particle Systems in Quantum Field Theory I: Noninteracting Particles 152
	4.12	Many-Particle Systems in Quantum Field Theory II: Interacting Particles 153 References 154
	5	Applications to Molecular Processes 157
	5.1	Dynamics of the Transformation of a Molecule A into a
		Molecule B 157
	5.2	Correlation Function for the Incoherent Parts 159
	5.3	Dynamics of the Transformation of a Molecule A Into a
		Molecule B: the Initial State is a Coherent State 163
	5.4	Dynamics of the Transformation of a Molecule A into
		a Molecule B: Coherent Driving 165
	5.5	The Method of Adiabatic Elimination 167
	5.6	Adiabatic Elimination: a Refined Treatment 168
	5.7	Parametric Molecular Processes 172
	5.8	Parametric Oscillator 176
	6	Molecular Transport along One-Dimensional Periodic Structures 181
	6.1	A Short Overview 181
	6.1.1	Transport in One-Dimensional Periodic Structures 181
	6.1.1.1	Examples of Such Structures 181
	6.1.1.2	Examples of Transported Objects 181
	6.1.1.3	Kinds of Transport 182
	6.1.1.4	The Basic Question 182
	6.1.1.5	Microtubuli and Actin Filaments 183
	6.1.1.6	Motor Proteins: Kinesin and Dynein 183
	6.1.1.7	Actin Filaments 183
	6.1.2	Basic Equations of Passive Molecular Transport: Noise-Free Solution 184
	6.1.3	The Impact of Quantum Fluctuations 188

6.1.4 6.2 6.3	Several Molecules 190 Production and Transport of Molecules 191 Signal Transmission by Molecules 196 References 199
7	A Topic in Quantum Biology 201
7.1	Contraction of Skeleton Muscles 201
7.1.1	Structure and Function of the Skeleton Muscle of Vertebrates 201
7.1.2	Interaction between Myosin and Actin 202
7.2	Details of the Movement Cycle 203
7.3	The Model and Its Basic Equations 203
7.4	Solution to Equations 7.7–7.15 206
7.4.1	The First Step 207
7.4.2	The Second Step 209
7.5	The Steps (3) and (4) 210
7.6	Discussion of Sections 7.4–7.5 211
7.7	The Skeleton Muscle: a Reliable System Composed
	of Unreliable Elements 212
7.8	Detailed Derivation of (7.75) 216
	References 217
8	Quantum Information 219
8.1	Introduction 219
8.2	The Maximum Information Principle 220
8.3	Order Parameters and Enslaved Modes 224
8.4	Haken–Levi Principle I: Quantum Mechanical 225
8.5	Haken–Levi Principle II: Quantum Mechanical 227
	Reference 232
9	Molecular Robots 233
9.1	Construction Principles: The Basic Material 233
9.2	Mobile DNA Molecules 235
9.2.1	Step by Step: Glueing Together and Cleaving 235
9.3	Goal (Road Map of the Following Chapter) 240
9.4	Quantum Field Theory of Motion of a Molecular Robot: a Model 240
9.4.1	A Molecule Moves on an "Energy-Rich" Substrate 240
9.4.1.1	Molecular Quantum System 240
9.4.1.2	Substrate (s) 240
9.4.1.3	Interaction r–s 241
9.4.1.4	Considered Scenario 241
9.4.1.5	Labeling the Quantum States 242
9.4.1.6	Labeling the States of Processes 243
9.4.2	General Site <i>l</i> , Transitions, Hamiltonians 244
9.4.3	Two Types of Solution 246
9.4.3.1	"Grass Fire" Solution 246

x	Contents		
	9.4.3.2	"Running Waves" Solution 256	
	9.4.4	Generalizations 263	
	9.4.4.1	Collective Motion of Several Robot Molecules: Equations of Motion	263
	9.4.4.2	Synchronization of Motion 264	
	9.4.4.3	Derivation of Basic Equations of Coherent Motion 265	
	9.4.4.4	Bipedal Walking 267	
	9.5	The Question of Molecular Quantum Waves 270	
		References 271	

Appendix: The Meaning of Expectation Values and Correlation Functions of Bose and Fermi Operators 273

List of Symbols 277

Index 281