Contents

Foreword to the First Edition XVIIPreface to the First Edition XIXPreface to the Second Edition XXIIIAcknowledgements XXV

1	Introduction 1
1.1	Classification of Rotor Systems 1
1.2	Historical Perspective 3
	References 8
2	Vibrations of Massless Shafts with Rigid Disks 11
2.1	General Considerations 11
2.2	Rotor Unbalance 11
2.3	Lateral Vibrations of an Elastic Shaft with a Disk at Its Center 13
2.3.1	Derivation of Equations of Motion 13
2.3.2	Free Vibrations of an Undamped System and Whirling Modes 14
2.3.3	Synchronous Whirl of an Undamped System 16
2.3.4	Synchronous Whirl of a Damped System 20
2.3.5	Energy Balance 22
2.4	Inclination Vibrations of an Elastic Shaft with a Disk at Its Center 23
2.4.1	Rotational Equations of Motion for Single Axis Rotation 23
2.4.2	Equations of Motion 23
2.4.3	Free Vibrations and Natural Angular Frequency 27
2.4.4	Gyroscopic Moment 29
2.4.5	Synchronous Whirl 33
2.5	Vibrations of a 4 DOF System 34
2.5.1	Equations of Motion 34
2.5.1.1	Derivation by Using the Results of 2 DOF System 35
2.5.1.2	Derivation by Lagrange's Equations 37
2.5.2	Free Vibrations and a Natural Frequency Diagram 40
2.5.3	Synchronous Whirling Response 42
2.6	Vibrations of a Rigid Rotor 43
2.6.1	Equations of Motion 43

VIII	Contents

2.6.2 2.7	Free Whirling Motion and Whirling Modes 45 Approximate Formulas for Critical Speeds of a Shaft with Several
	Disks 46
2.7.1	Rayleigh's Method 47
2.7.2	Dunkerley's Formula 48
	References 48
3	Vibrations of a Continuous Rotor 49
3.1	General Considerations 49
3.2	Equations of Motion 50
3.3	Free Whirling Motions and Critical Speeds 55
3.3.1	Analysis Considering Only Transverse Motion 56
3.3.2	Analysis Considering the Gyroscopic Moment and Rotary Inertia 58
3.3.3	Major Critical Speeds 59
3.4	Synchronous Whirl 60
	References 65
4	Balancing 67
4.1	Introduction 67
4.2	Classification of Rotors 67
4.3	Balancing of a Rigid Rotor 69
4.3.1	Principle of Balancing 69
4.3.1.1	Two-Plane Balancing 69
4.3.1.2	Single-Plane Balancing 70
4.3.2	Balancing Machine 71
4.3.2.1	Static Balancing Machine 71
4.3.2.2	Dynamic Balancing Machine 71
4.3.3	Field Balancing 75
4.3.4	Various Expressions of Unbalance 77
4.3.4.1	Resultant Unbalance <i>U</i> and Resultant Unbalance Moment <i>V</i> 77
4.3.4.2	Dynamic Unbalance (U_1 , U_2) 79
4.3.4.3	Static Unbalance U and Couple Unbalance $[U_c, -U_c]$ 80
4.3.5	Balance Quality Grade of a Rigid Rotor 82
4.3.5.1	Balance Quality Grade 82
4.3.5.2	How to Use the Standards 84
4.4	Balancing of a Flexible Rotor 86
4.4.1	Effect of the Elastic Deformation of a Rotor 86
4.4.2	Modal Balancing Method 87
4.4.2.1	N-Plane Modal Balancing 88
4.4.2.2	(N + 2)-Plane Modal Balancing 90
4.4.3	Influence Coefficient Method 90 References 92
5	Vibrations of an Asymmetrical Shaft and an Asymmetrical Rotor 93
5.1	General Considerations 93

5.2	Asymmetrical Shaft with a Disk at Midspan 94	
5.2.1	Equations of Motion 94	
5.2.2	Free Vibrations and Natural Frequency Diagrams 95	
5.2.2.1	Solutions in the Ranges $\omega > \omega_{c1}$ and $\omega < \omega_{c2}$ 98	
5.2.2.2	Solutions in the Range $\omega_{c1} > \omega > \omega_{c2}$ 99	
5.2.3	Synchronous Whirl in the Vicinity of the Major Critical Speed 100	
5.3	Inclination Motion of an Asymmetrical Rotor Mounted on a Symmetrical Shaft 102	
5.3.1	Equations of Motion 103	
5.3.2	Free Vibrations and a Natural Frequency Diagram 108	
5.3.3	Synchronous Whirl in the Vicinity of the Major Critical Speed 109	
5.4	Double-Frequency Vibrations of an Asymmetrical Horizontal Shaft 110	
	References 113	
	References 113	
6	Nonlinear Vibrations 115	
6.1	General Considerations 115	
6.2	Causes and Expressions of Nonlinear Spring Characteristics: Weak	
	Nonlinearity 115	
6.3	Expressions of Equations of Motion Using Physical and Normal	
	Coordinates 121	
6.4	Various Types of Nonlinear Resonances 123	
6.4.1	Harmonic Resonance 124	
6.4.1.1	Solution by the Harmonic Balance Method 124	
6.4.1.2	Solution Using Normal Coordinates 128	
6.4.2	Subharmonic Resonance of Order 1/2 of a Forward Whirling	
	Mode 130	
6.4.3	Subharmonic Resonance of Order 1/3 of a Forward Whirling	
	Mode 132	
6.4.4	Combination Resonance 133	
6.4.5	Summary of Nonlinear Resonances 136	
6.5	Nonlinear Resonances in a System with Radial Clearance: Strong	
	Nonlinearity 139	
6.5.1	Equations of Motion 141	
6.5.2	Harmonic Resonance and Subharmonic Resonances 142	
6.5.3	Chaotic Vibrations 144	
6.6	Nonlinear Resonances of a Continuous Rotor 145	
6.6.1	Representations of Nonlinear Spring Characteristics and Equations	
	of Motion 146	
6.6.2	Transformation to Ordinary Differential Equations 149	
6.6.3	Harmonic Resonance 150	
6.6.4	Summary of Nonlinear Resonances 151	
6.7	Internal Resonance Phenomenon 152	
6.7.1	Examples of the Internal Resonance Phenomenon 152	
6.7.2	Subharmonic Resonance of Order 1/2 153	

x	Contents	
	6.7.3	Chaotic Vibrations in the Vicinity of the Major Critical Speed 156 References 158
	7	Self-Excited Vibrations due to Internal Damping 161
	7.1	General Considerations 161
	7.2	Friction in Rotor Systems and Its Expressions 161
	7.2.1	External Damping 162
	7.2.2	Hysteretic Internal Damping 162
	7.2.3	Structural Internal Damping 167
	7.3	Self-Excited Vibrations due to Hysteretic Damping 168
	7.3.1	System with Linear Internal Damping Force 169
	7.3.2	System with Nonlinear Internal Damping Force 171
	7.4	Self-Excited Vibrations due to Structural Damping 173 References 176
	8	Nonstationary Vibrations during Passage through Critical Speeds 177
	8.1	General Considerations 177
	8.2	Equations of Motion for Lateral Motion 178
	8.3	Transition with Constant Acceleration 179
	8.4	Transition with Limited Driving Torque 183
	8.4.1	Characteristics of Power Sources 183
	8.4.2	Steady-State Vibration 184
	8.4.3	Stability Analysis 187
	8.4.4	Nonstationary Vibration 188
	8.5	Analysis by the Asymptotic Method (Nonlinear System, Constant Acceleration) 189
	8.5.1	Equations of Motion and Their Transformation to a Normal Coordinate Expression 190
	8.5.2	Steady-State Solution 192
	8.5.3	Nonstationary Vibration 194
		References 196
	9	Vibrations due to Mechanical Elements 199
	9.1	General Considerations 199
	9.2	Ball Bearings 199
	9.2.1	Vibration and Noise in Rolling-Element Bearings 199
	9.2.1.1	Vibrations due to the Passage of Rolling Elements 200
	9.2.1.2	Natural Vibrations of Outer Rings 202
	9.2.1.3	Geometrical Imperfection 204
	9.2.1.4	Other Noises 205
	9.2.2	Resonances of a Rotor Supported by Rolling-Element Bearings 205
	9.2.2.1	Resonances due to Shaft Eccentricity 205
	9.2.2.2	Resonances due to the Directional Difference in Stiffness 206
	9223	Vibrations of a Horizontal Rotor due to the Passage of Rolling

Elements 208

9.2.2.4	Vibrations due to the Coexistence of the Passage of Rolling Elements and a Shaft Initial Bend 208		
9.3	Bearing Pedestals with Directional Difference in Stiffness 209		
9.4	Universal Joint 211		
9.5	Rubbing 215		
9.5.1	Equations of Motion 217		
9.5.2	Numerical Simulation 218		
9.5.3	Theoretical Analysis 220		
9.5.3.1	Forward Rubbing 220		
9.5.3.2	Backward Rubbing 221		
9.6	Self-Excited Oscillation in a System with a Clearance between Bearing		
0.6.1	and Housing 222		
9.6.1	Experimental Setup and Experimental Results 223		
9.6.2	Analytical Model and Reduction of Equations of Motion 224 Numerical Simulation 226		
9.6.3	Self-Excited Oscillations 227		
9.6.4 9.6.4.1	Analytical Model and Equations of Motion 227		
9.6.4.2	Stability of a Synchronous Whirl 228		
9.6.4.3	Mechanism of a Self-Excited Oscillation 229		
J.U.T.J	References 232		
10	Flow-Induced Vibrations 235		
10.1	General Considerations 235		
10.2	Oil Whip and Oil Whirl 235		
10.2.1	Journal Bearings and Self-Excited Vibrations 236		
10.2.2	Reynolds Equation 239		
10.2.3	Oil Film Force 240		
10.2.3.1	Short Bearing Approximation 241		
10.2.3.2	Long Bearing Approximation 243		
10.2.4	Stability Analysis of an Elastic Rotor 243		
10.2.5	Oil Whip Prevention 246		
10.3	Seals 248		
10.3.1	Plain Annular Seal 248		
10.3.2	Labyrinth Seal 251		
10.4	Tip Clearance Excitation 251		
10.5	Hollow Rotor Partially Filled with Liquid 252		
10.5.1	Equations Governing Fluid Motion and Fluid Force 254		
10.5.2	Asynchronous Self-Excited Whirling Motion 256		
10.5.3	Resonance Curves at the Major Critical Speed (Synchronous		
	Oscillation) 257		
	References 261		
11	Vibration Suppression 263		
11.1	Introduction 263		
11.2	Vibration Absorbing Rubber 263		

XII	Contents
-----	----------

11.3	Theory of Dynamic Vibration Absorber 263
11.4	Squeeze-Film Damper Bearing 264
11.5	Ball Balancer 266
11.5.1	Fundamental Characteristics and the Problems 266
11.5.2	Countermeasures to the Problems 268
11.6	Discontinuous Spring Characteristics 271
11.6.1	Fundamental Characteristics and the Problems 271
11.6.2	Countermeasures to the Problems 273
11.6.3	Suppression of Unstable Oscillations of an Asymmetrical Shaft 27-
11.7	Leaf Spring 276
11.8	Viscous Damper 277
11.9	Suppression of Rubbing 278
	References 280
12	Some Practical Rotor Systems 283
12.1	General Consideration 283
12.2	Steam Turbines 283
12.2.1	Construction of a Steam Turbine 283
12.2.2	Vibration Problems of a Steam Turbine 286
12.2.2.1	Poor Accuracy in the Manufacturing of Couplings 286
12.2.2.2	Thermal Bow 287
12.2.2.3	Vibrations of Turbine Blades 287
12.2.2.4	Oil Whip and Oil Whirl 290
12.2.2.5	Labylinth Seal 290
12.2.2.6	Steam Whirl 290
12.3	Wind Turbines 290
12.3.1	Structure of a Wind Turbine 290
12.3.2	Campbell Diagram of a Wind Turbine with Two Teetered
	Blades 292
12.3.3	Excitation Forces in Wind Turbines 294
12.3.4	Example: Steady-State Oscillations of a Teetered Two-Bladed Wind
	Turbine 295
12.3.4.1	Wind Velocity 296
12.3.4.2	Vibration of the Tower 296
12.3.4.3	Flapwise Bending Vibration of the Blade 297
12.3.4.4	Chordwise Bending Vibration of the Blade 297
12.3.4.5	Torque Variation of the Low-Speed Shaft 297
12.3.4.6	Variation of the Teeter Angle 297
12.3.4.7	Variation of the Pitch Angle 297
12.3.4.8	Gear 297
12.3.5	Balancing of a Rotor 298
12.3.6	Vibration Analysis of a Blade Rotating in a Vertical Plane 299
12.3.6.1	Derivation of Equations of Motion 299
12.3.6.2	Natural Frequencies 302
12.3.6.2	Forced Oscillation 302

12.3.6.4	Parametrically Excited Oscillation 303 References 305
13	Cracked Rotors 307
13.1	General Considerations 307
13.2	Modeling and Equations of Motion 309
13.2.1	Piecewise Linear Model (PWL Model) 309
13.2.2	Power Series Model (PS Model) 311
13.3	Numerical Simulation (PWL Model) 312
13.3.1	Horizontal Rotor 312
13.3.2	Vertical Rotor 313
13.4	Theoretical Analysis (PS Model) 313
13.4.1	Forward Harmonic Resonance $[+\omega]$ (Horizontal Rotor) 313
13.4.2	Forward Harmonic Resonance $[+\omega]$ (Vertical Rotor) 315
13.4.3	Forward Superharmonic Resonance $[+2\omega]$ (Horizontal Rotor) 315
13.4.4	Other Kinds of Resonance 317
13.4.4.1	Backward Harmonic Resonance $[-\omega]$ 317
13.4.4.2	Forward Superharmonic Resonance $[+3\omega]$ 317
13.4.4.3	Forward Subharmonic Resonance $[+(1/2)\omega]$ 318
13.4.4.4	Forward Super-Subharmonic Resonance $[+(3/2)\omega]$ 319
13.4.4.5	Combination Resonance 320
13.5	Case History in Industrial Machinery 321
	References 324
14	Finite Element Method 327
14.1	General Considerations 327
14.2	Fundamental Procedure of the Finite Element Method 327
14.3	Discretization of a Rotor System 328
14.3.1	Rotor Model and Coordinate Systems 328
14.3.2	Equations of Motion of an Element 329
14.3.2.1	Rigid Disk 329
14.3.2.2	Finite Rotor Element 330
14.3.3	Equations of Motion for a Complete System 336
14.3.3.1	Model I: (Uniform Elastic Rotor) 336
14.3.3.2	•
14.3.3.3	Variation of Equations of Motion 343
14.4	Free Vibrations: Eigenvalue Problem 345
14.5	Forced Vibrations 347
14.6	Alternative Procedure 349
	References 350
15	Transfer Matrix Method 351
15.1	General Considerations 351
15.2	Fundamental Procedure of the Transfer Matrix Method 351
15.2.1	Analysis of Free Vibration 351

xıv	Contents		
-----	----------	--	--

15.2.2	Analysis of Forced Vibration 355
15.3	Free Vibrations of a Rotor 359
15.3.1	State Vector and Transfer Matrix 359
15.3.2	Frequency Equation and the Vibration Mode 364
15.3.3	Examples 365
15.3.3.1	Model I: Uniform Continuous Rotor 365
15.3.3.2	Model II: Disk-Shaft System 366
15.4	Forced Vibrations of a Rotor 367
15.4.1	External Force and Extended Transfer Matrix 367
15.4.2	Steady-State Solution 370
15.4.3	Example 371
	References 371
16	Measurement and Signal Processing 373
16.1	General Considerations 373
16.2	Measurement and Sampling Problem 374
16.2.1	Measurement System and Digital Signal 374
16.2.2	Problems in Signal Processing 375
16.3	Fourier Series 376
16.3.1	Real Fourier Series 376
16.3.2	Complex Fourier Series 376
16.4	Fourier Transform 378
16.5	Discrete Fourier Transform 379
16.6	Fast Fourier Transform 383
16.7	Leakage Error and Countermeasures 383
16.7.1	Leakage Error 383
16.7.2	Countermeasures for Leakage Error 384
16.7.2.1	Window Function 384
16.7.2.2	Prevention of Leakage by Coinciding Periods 385
16.8	Applications of FFT to Rotor Vibrations 386
16.8.1	Spectra of Steady-State Vibration 386
16.8.1.1	Subharmonic Resonance of Order 1/2 of a Forward Whirling Mode 386
16.8.1.2	Combination Resonance 388
16.8.2	Nonstationary Vibration 388
	References 391
17	Active Magnetic Bearing 393
17.1	General Considerations 393
17.2	Magnetic Levitation and Earnshaw's Theorem 393
17.3	Active Magnetic Levitation 394
17.3.1	Levitation Model 394
17.3.2	Current Control with PD-Control 396
17.3.2.1	Physical Meanings of PD Control 397
17.3.2.2	Transfer Function and Stability Condition 397

17.3.2.3	Determination of Gains 398	
17.3.2.4	Case with a Static Load 399	
17.3.3	Current Control with PID-Control 399	
17.3.3.1	Transfer Function and Stability Condition 399	
17.3.3.2	Determination of Gains 400	
17.3.3.3	Case with a Static Load 400	
17.3.4	Practical Examples of Levitation 401	
17.3.4.1	Identification of System Parameters 401	
17.3.4.2	Digital PD-Control with DSP 402	
17.3.5	Current Control with State Feedback Control 403	
17.4	Active Magnetic Bearing 405	
17.4.1	Principle of an Active Magnetic Bearing 405	
17.4.2	Active Magnetic Bearings in a High-Speed Spindle System 405	
17.4.3	Dynamics of a Rigid Rotor system 406	
	References 408	
	A Moment of Inertia and Equations of Motion 409 B Stability above the Major Critical Speed 413	
	,	
Appendix	C Derivation of Equations of Motion of a 4 DOF Rotor System by Using Euler Angles 415	
Appendix	D Asymmetrical Shaft and Asymmetrical Rotor with Four Degrees of	
	Freedom 421	
D.1	4 DOF Asymmetrical Shaft System 421	
D.2	4 DOF Asymmetrical Rotor System 423	
	Reference 425	
Annendiy	E Transformation of Equations of Motion to Normal Coordinates: 4 DOF	
лррспаіх	Rotor System 427	
E.1	Transformation of Equations of Motion to Normal Coordinates 427	
E.2	Nonlinear Terms 428	
	References 429	
Annandiv	F Routh-Hurwitz Criteria for Complex Expressions 431	
лррспал	References 432	
	ACCIONCES TJ2	
Appendix	G FFT Program 433	
- •	References 435	
	References 155	

Index 437