Contents

Foreword XI
Preface XIII
List of Contributors XVII

1 Concepts in Nanocatalysis 1
Karine Philippot and Philippe Serp
1.1 Introduction 1
1.2 The Impact of the Intrinsic Properties of Nanomaterials on Catalysis 5
1.2.1 Metallic Nanoparticles 6
1.2.2 Metal Oxide Nanoparticles 9
1.2.3 Carbon Nanoparticles 12
1.3 How can Nanocatalyst Properties be Tailored? 15
1.3.1 Size, Shape and Surface Chemistry of Nanoparticles 15
1.3.2 Assembling Strategies to Control Active Site Location 20
1.4 Nanocatalysis: Applications in Chemical Industry 23
1.4.1 Fuel Cells 25
1.4.2 Nanostructured Exhaust Catalysts 28
1.4.3 Gas Sensors 31
1.4.4 Photocatalysis 34
1.4.5 Enantioselective Catalysis 38
1.5 Conclusions and Perspectives 40
References 42

2 Metallic Nanoparticles in Neat Water for Catalytic Applications 55
Audrey Denicourt-Nowicki and Alain Roucoux
2.1 Introduction 55
2.2 Synthesis of Nanoparticles in Water: The State of The Art 56
2.3 Water-Soluble Protective Agents and their use in Nanocatalysis 59
2.3.1 Electrosteric Stabilization by Surfactants 60
2.3.2 Steric Stabilization by Cyclodextrins 67
2.3.2.1 Hydrogenation Reactions 68
2.3.2.2 Carbon–Carbon Coupling Reactions 73
2.3.3 Steric Stabilization by Polymers and Derivatives 77
2.3.4 Steric Stabilization by Ligands 83
2.4 Conclusion and Perspectives 88
References 89
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Catalysis by Dendrimer-Stabilized and Dendrimer-Encapsulated Late-Transition-Metal Nanoparticles</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Didier Astruc, Abdou Diallo, and Catia Ornelas</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>97</td>
</tr>
<tr>
<td>3.2</td>
<td>Synthesis</td>
<td>98</td>
</tr>
<tr>
<td>3.3</td>
<td>Homogeneous Catalysis with DENs Generated from PAMAM and PPI Dendrimers</td>
<td>102</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Olefin and Nitroarene Hydrogenation</td>
<td>102</td>
</tr>
<tr>
<td>3.3.2</td>
<td>PdNP-Catalyzed Carbon–Carbon Cross Coupling</td>
<td>104</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Heterobimetallic Catalysts</td>
<td>104</td>
</tr>
<tr>
<td>3.4</td>
<td>Highly Efficient 'click'-Dendrimer-Encapsulated and Stabilized Pd Nanoparticle Pre-Catalysts</td>
<td>106</td>
</tr>
<tr>
<td>3.5</td>
<td>Heterogeneous Catalysis</td>
<td>111</td>
</tr>
<tr>
<td>3.6</td>
<td>Electrocatalysis</td>
<td>112</td>
</tr>
<tr>
<td>3.7</td>
<td>Conclusion and Outlook</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>114</td>
</tr>
<tr>
<td>4</td>
<td>Nanostructured Metal Particles for Catalysts and Energy-Related Materials</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Helmut Bönemann, Guram Khelashvili, Josef Hormes, Timma-Joshua Kühn, and Wolf-Jürgen Richter</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>General Survey</td>
<td>123</td>
</tr>
<tr>
<td>4.2</td>
<td>Nanostructured Clusters and Colloids as Catalyst Precursors</td>
<td>128</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Selected Applications in Energy-Related Processes</td>
<td>128</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Size-Selective Fischer–Tropsch Nanocatalysts</td>
<td>128</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Nanocatalysts for Fuel Cell Devices</td>
<td>131</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Partial Methane Oxidation with NO</td>
<td>139</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Nanocatalysts for Specific Organic Reactions</td>
<td>140</td>
</tr>
<tr>
<td>4.3</td>
<td>Nanostructured Materials in Energy-Related Processes</td>
<td>142</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Nanomaterials for High-Performance Solar Cells</td>
<td>142</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Nanocomposites for Batteries</td>
<td>145</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Applications for Energy and Hydrogen Storage</td>
<td>148</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Nano for Hydrogen Production</td>
<td>149</td>
</tr>
<tr>
<td>4.3.3.2</td>
<td>Nano for Hydrogen Storage</td>
<td>150</td>
</tr>
<tr>
<td>4.4</td>
<td>Characterization of Nanostructured Metallic Catalyst Precursors and their Interaction with Coatings and Supports Using X-ray Absorption Spectroscopy</td>
<td>154</td>
</tr>
<tr>
<td>4.4.1</td>
<td>X-ray Absorption Spectroscopy (XANES and EXAFS) as an Analytical Tool for Nanostructures</td>
<td>156</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The Electronic and Geometric Properties of Monometallic Systems</td>
<td>161</td>
</tr>
<tr>
<td>4.4.3</td>
<td>The Geometric and Electronic Structure of Bimetallic Systems</td>
<td>168</td>
</tr>
<tr>
<td>4.4.4</td>
<td>The Specific Interaction of Metallic Nanoparticles with Coatings and Supports</td>
<td>173</td>
</tr>
</tbody>
</table>
Contents

4.4.5 Resonant Elastic and Inelastic X-ray Scattering: Site and/or Valency Specific Spectroscopy 178
References 183

5 Metallic Nanoparticles in Ionic Liquids—Applications in Catalysis 203
Isabelle Favier, David Madec, and Montserrat Gómez

5.1 Introduction 203
5.2 Interactions between Ionic Liquids and Metallic Nanoparticles 204
5.2.1 Stabilization Modes of Metallic Nanoparticles by Ionic Liquids 206
5.2.1.1 DLVO Theory: Anionic Stabilization Mode 206
5.2.1.2 Steric Stabilization Mode 207
5.2.1.3 Cationic Stabilization Mode 207
5.2.1.4 Anionic and Cationic Stabilization Mode 209
5.2.1.5 Interactions of Ionic Liquids with Metal Oxide Nanoparticles (MONPs) 209
5.2.2 Effect of Ionic Liquids on the Structures of Metallic Nanoparticles 210
5.3 Catalytic Applications 213
5.3.1 Metallic Nanoparticles of Block p 213
5.3.2 Metallic Nanoparticles of Block d and f 213
5.3.2.1 Early Transition Metals and Block f Metals 213
5.3.2.2 Metallic Nanoparticles of Groups 8–9 214
5.3.2.3 Metallic Nanoparticles of Group 10 222
5.3.2.4 Metallic Nanoparticles of Group 11 232
5.3.2.5 Metallic Nanoparticles of Group 12 235
5.4 Conclusions 235
References 236

6 Supported Ionic Liquid Thin Film Technology 251
Judith Scholz and Marco Haumann

6.1 Introduction 251
6.1.1 Supported Ionic Liquid Phase (SILP) 252
6.1.2 Solid Catalysts with Ionic Liquid Layers (SCILL) 253
6.1.3 Ionic Liquid as Surface Modifier 253
6.2 Nanoparticle Catalysis with Supported Ionic Liquids 254
6.2.1 Nanoparticles in SILP Systems (nano-SILP) 254
6.2.2 Nanoparticles in SCILL Systems (nano-SCILL) 260
6.2.3 Nanoparticles in IL Surface Modified Systems 264
6.2.3.1 Surface-Modified Ordered Meso-Porous Silica 265
6.2.3.2 Surface Modified Nanocrystalline Metal Oxides 266
6.2.3.3 IL-Functionalized Highly Cross-Linked Polymers as Support 267
6.2.3.4 Natural Clays with IL-Functionalization 268
6.2.3.5 Carbon Nanotubes 269
6.2.3.6 Miscellaneous Supports 270
6.3 Benefits for Synthesis and Processes 272
6.4 Conclusion 273
References 273
7 Nanostructured Materials Synthesis in Supercritical Fluids for Catalysis Applications 281

Samuel Marre and Cyril Aymonier

7.1 Introduction: Properties of Supercritical Fluids 281
7.2 Synthesis of Nanopowders as Nanocatalysts in SCFs 286
7.3 Synthesis of Supported Nanoparticles as Nanocatalysts in SCFs 292
7.3.1 Kinetically-Controlled SFCD Process (K-SFCD) 292
7.3.2 Thermodynamically-Controlled SFCD Process (T-SFCD) 293
7.4 Supercritical Microfluidic Synthesis of Nanocrystals 297
7.4.1 Supercritical Microreactors 299
7.4.2 Nanocrystals Synthesis in ScμF 300
7.5 Conclusion 302

References 303

8 Recovery of Metallic Nanoparticles 311

Inge Geukens and Dirk E. De Vos

8.1 Introduction 311
8.2 Immobilization on a Solid Support 311
8.3 Multiple Phases 314
8.4 Precipitation and Redispersion 317
8.4.1 Centrifugation 317
8.4.2 Adjustment of the Stabilization Conditions 318
8.5 Magnetic Separation 320
8.6 Filtration 322
8.7 Conclusions 324

References 324

9 Carbon Nanotubes and Related Carbonaceous Structures 331

Dang Sheng Su

9.1 Introduction 331
9.2 Carbon Nanotubes as Nanosupport 333
9.3 Purification and Functionalization 334
9.3.1 CNT Purification 334
9.3.2 CNT Functionalization 335
9.3.2.1 Functionalization of CNTs by Wet Chemical Methods 336
9.3.2.2 Functionalization of CNTs by Gas-Phase Reactions 338
9.4 Preparation of CNT-Supported Catalysts 340
9.4.1 Growing Metal Nanoparticles Directly on the CNT Surface 340
9.4.2 Anchoring Pre-Formed Nanoparticles on CNTs 341
9.4.3 Selective Preparation of Catalysts on CNTs 342
9.4.3.1 Selective Placing of Metal Catalysts Inside CNTs 343
9.4.3.2 Selective Placing of Metal Catalyst Outside CNTs 344
9.4.4 Localizing the Catalyst Particles Supported on CNTs 345
9.5 Applications of CNT-Supported Catalysts 346
9.5.1 Liquid-Phase Reactions 346
9.5.1.1 Hydrogenation 346
12 In Silico Nanocatalysis with Transition Metal Particles: Where Are We Now? 443
lann C. Gerber and Romuald Poteau
12.1 Introduction 443
12.2 Surface Chemistry and Chemistry on Facets of Nanoparticles: Is it the Same? 446
12.2.1 The Experimental Evidence: Size and Shape Matter 446
12.2.2 Can this Diversity of Observations be Rationalized by Theoretical Insights? 448
12.2.3 Structural and Chemical Bonding Knowledge: A Mandatory Prerequisite 448
12.2.3.1 Silver 449
12.2.3.2 Iron 450
12.2.3.3 Platinum 450
12.3 Electronic and Geometric Factors that Determine the Reactivity of Metal Surfaces 451
12.3.1 Introduction 451
12.3.2 Special Sites 451
12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The d-Band Model 452
12.3.4 Descriptors and Predictive Studies 455
12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456
12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretical Point of View 457
12.4 Theoretical Studies of Multistep Pathways 460
12.4.1 Methods 460
12.4.2 Ammonia Synthesis 462
12.4.3 Oxidation 463
12.4.3.1 Styrene 463
12.4.3.2 Propylene 464
12.4.3.3 Aerobic Phenylethanol Oxidation in Aqueous Solution 465
12.4.4 Dissociation 466
12.4.4.1 Carbon Monoxide 466
12.4.4.2 Methane Steam Reforming 468
12.5 Conclusion 470
References 471

Index 483