Contents

Preface
List of Contributors

Part I Introductory Section 1

1. **Editorial Introduction**
 Genserik L.L. Reniers, Kenneth Sørensen, and Karl Vrancken

 1.1 From Industrial to Sustainable Chemistry, a Policy Perspective
 1.2 Managing Intraorganizational Sustainability
 1.3 Managing Horizontal Interorganizational Sustainability
 1.4 Managing Vertical Interorganizational Sustainability
 1.5 Sustainable Chemistry in a Societal Context

2. **History and Drivers of Sustainability in the Chemical Industry**
 Dick森 Tanzil and Darlene Schuster

 2.1 The Rise of Public Pressure
 2.1.1 The Environmental Movement
 2.1.2 A Problem of Public Trust
 2.2 Industry Responded
 2.2.1 The Responsible Care Program
 2.2.2 Technology Development
 2.2.3 Corporate Sustainability Strategies
 2.3 An Evolving Framework
 2.3.1 New Issues and Regulations
 2.3.2 Sustainability as an Opportunity
 2.3.3 Recent Industry Trends
 2.4 Conclusions: the Sustainability Drivers
 References

Bibliografische Informationen
http://d-nb.info/102711590X
Contents

3 **From Industrial to Sustainable Chemistry, a Policy Perspective**
Karl Vrancken and Frank Nevens
3.1 Introduction
3.2 Integrated Pollution Prevention and Control
3.2.1 Environmental Policy for Industrial Emissions
3.2.2 Best Available Techniques and BREFs
3.2.3 Integrated Pollution Prevention and Control in the Chemical Sector
3.3 From IED to Voluntary Systems
3.4 Sustainability Challenges for Industry
3.4.1 Introduction
3.4.2 Policy Drivers for Sustainable Chemistry
3.4.3 Transition Concept
3.5 Conclusion
References

4 **Sustainable Industrial Chemistry from a Nontechnological Viewpoint**
Genserik L.L. Renters, Kenneth Sørensen, and Karl Vrancken
4.1 Introduction
4.2 Intraorganizational Management for Enhancing Sustainability
4.3 Horizontal Interorganizational Management for Enhancing Sustainability
4.4 Vertical Interorganizational Management for Enhancing Sustainability
4.5 Sustainable Chemistry in a Societal Context
4.6 Conclusions
References

Part II Managing Intra-Organizational Sustainability

5 **Building Corporate Social Responsibility – Developing a Sustainability Management System Framework**
Stefan Maas, Genserik L.L. Renters, and Marijke De Prins
5.1 Introduction
5.2 Development of a CSR Management System Framework
5.2.1 Management Knowledge and Commitment (Soft Factor)
5.2.2 Stakeholder Knowledge and Commitment (Soft Factor)
5.2.3 Strategic Planning – the Choice of Sustainable Strategic Pillars (Hard Factor)
5.2.4 Knowledge and Commitment from the Workforce (Soft Factor)
5.2.5 Operational Planning, Execution, and Monitoring (Hard Factor)
5.3 Conclusions
References
6 Sustainability Assessment Methods and Tools 55
Steven De Meester, Geert Van der Vorst, Herman Van Langenhove, and Jo Dewulf

6.1 Introduction 55
6.2 Sustainability Assessment Framework 56
6.3 Impact Indicators and Assessment Methodologies 59
6.3.1 Environmental Impact Assessment 62
6.3.1.1 Emission Impact Indicators 62
6.3.1.2 Resource Impact Indicators 68
6.3.1.3 Technology Indicators 71
6.3.1.4 Assessment Methodologies 72
6.3.2 Economic Impact Assessment 75
6.3.2.1 Economic Impact Indicators 76
6.3.2.2 Assessment Methodologies 76
6.3.3 Social Impact Assessment 77
6.3.3.1 Social Impact Indicators 78
6.3.3.2 Assessment Methodologies 79
6.3.4 Multidimensional Assessment 79
6.3.5 Interpretation 81
6.4 Conclusions 81
References 82

7 Integrated Business and SHESE Management Systems 89
Kathleen Van Heuverswyn and Genserik L.I. Reniers

7.1 Introduction 89
7.2 Requirements for Integrating Management Systems 90
7.3 Integrating Management Systems: Obstacles and Advantages 92
7.4 Integrated Risk Management Models 95
7.4.1 FERMA Risk Management Standard 2003 95
7.4.2 Australian/New Zealand Norm AS/NZS 4360:2004 96
7.4.3 ISO 31000:2009 97
7.4.4 The Canadian Integrated Risk Management Framework (IRM Framework) 98
7.5 Characteristics and Added Value of an Integrated Model; Integrated Management in Practice 100
7.6 Conclusions 103
References 103

8 Supporting Process Design by a Sustainability KPIs Methodology 105
Alessandro Tugnoli, Valerio Cozzani, and Francesco Santarelli

8.1 Introduction 105
8.2 Quantitative Assessment of Sustainability KPIs in Process Design Activities 107
8.3 Identification of Relevant KPIs: the “Tree of Impacts” 111
8.4 Criteria for Normalization and Aggregation of the KPIs 121
8.5 Customization and Sensitivity Analysis in Early KPI Assessment 123
8.6 Conclusions 128
References 128

Part III Managing Horizontal Interorganizational Sustainability 131

9 Industrial Symbiosis and the Chemical Industry: between Exploration and Exploitation 133
Frank Boons
9.1 Introduction 133
9.2 Understanding Industrial Symbiosis 134
9.2.1 Industrial Symbiosis Leads to Decreased Ecological Impact 135
9.2.2 Industrial Symbiosis Requires a Highly Developed Social Network 136
9.2.3 The Regional Cluster Is the Preferred Boundary for Optimizing Ecological Impact 136
9.3 Resourcefulness 137
9.4 Putting Resourcefulness to the Test 138
9.4.1 Petrochemical Cluster in the Rotterdam Harbor Area 138
9.4.2 Terneuzen 139
9.4.3 Moerdijk 141
9.5 Conclusions 142
References 144

10 Cluster Management for Improving Safety and Security in Chemical Industrial Areas 147
Genserik I.L. Reniers
10.1 Introduction 147
10.2 Cluster Management 148
10.3 Cross-Organizational Learning on Safety and Security 150
10.3.1 Knowledge Transfer 150
10.3.2 Overcoming Confidentiality Hurdles: the Multi-Plant Council (MPC) 151
10.3.3 A Cluster Management Model for Safety and Security 152
10.4 Discussion 157
10.5 Conclusions 158
References 159

Part IV Managing Vertical Inter-Organizational Sustainability 161

11 Sustainable Chemical Logistics 163
Kenneth Sørensen and Christine Vanovermeire
11.1 Introduction 163
11.2 Sustainability of Logistics and Transportation 165
11.3 Improving Sustainability of Logistics in the Chemical Sector 166
11.3.1 Optimization 167
11.3.2 Coordinated Supply Chain Management 170
11.3.3 Horizontal Collaboration 171
11.3.4 Multimodal, Intermodal and Co-Modal Transportation 174
11.4 Conclusions 178
References 179

12 Implementing Service-Based Chemical Supply Relationship – Chemical Leasing® – Potential in EU 181
Bart P.A. Van der Velpen and Marianne J.J. Hoppenbrouwers

12.1 Introduction 181
12.2 Basic Principles of Chemical Leasing (ChL) 182
12.3 Differences between Chemical Leasing and Other Alternative Business Models for Chemicals 186
12.3.1 Classical Leasing 186
12.3.2 Chemical Management Services 186
12.3.3 Outsourcing 187
12.4 Practical Implications of Chemical Leasing 187
12.4.1 Strengths and Opportunities for the Supplier 189
12.4.2 Strengths and Opportunities for the Customer 190
12.5 Economic, Technical, and Juridical Aspects of Chemical Leasing 191
12.5.1 An Example 191
12.5.2 Barriers to the Model 191
12.5.3 Analysis of the Legal Requirements Impacting Chemical Leasing Projects 193
12.5.3.1 The Importance of Contracts 193
12.5.3.2 Competition Law and Chemical Leasing 194
12.5.3.3 REACH and Chemical Leasing 195
12.5.3.4 Legal Aspects, a Bottleneck? 196
12.6 Conclusions and Recommendations 197
References 198

13 Sustainable Chemical Warehousing 199
Kenneth Sorensen, Gerrit K. Janssens, Mohamed Lasgaa, and Frank Witlox

13.1 Introduction 199
13.2 Risk Management in the Chemical Warehouse 200
13.2.1 Hazard Identification 200
13.2.2 Quantifying Risk: Probabilities and Consequences 205
13.2.3 Mitigation Strategies 209
13.2.3.1 Minimize Risk 209
13.2.3.2 Transfer Risk 211
13.2.3.3 Accept Risk 213
16 The Transition to a Bio-Based Chemical Industry: Transition Management from a Geographical Point of View 247
Nele D’Haese

16.1 Introduction 247
16.2 Composition of the Chemical Clusters in Antwerp, Ghent, Rotterdam, and Terneuzen 249
16.2.1 The Rhine–Scheldt Delta 249
16.2.2 Past and Present of the Petrochemical Industry in the Ports of Antwerp, Ghent, Rotterdam, and Terneuzen 250
16.3 Regional Innovation Projects to Strengthen the Transition to a Bio-Based Chemical Industry 254
16.3.1 First Step: Substitution of Fossil Resources by Bio-Based Feedstocks Making Use of Vested Technologies 254
16.3.2 Second Step: Development of a New Technological Paradigm for the Production of Second-Generation Bio-Based Products 257
16.3.3 Third Step: Closing Material Loops 258
16.4 Conclusions 259
References 259

Part VI Conclusions and Recommendations 265

17 Conclusions and Recommendations 267
Genserik L.L. Reniers, Kenneth Sørensen, and Karl Vrancken

Index 269