Introduction	1
A science that people can understand	1
Target groups	2
Graphic programming	3
The digital Edition	4
Chapter 1	11
The concept: methods _ content _ objectives	11
	10
Everything under one root	12
Hardware: Systems on a chip	12
The software is the instrument	13
A case for up-to-date education	14
On the unity of theory and practice	14
Multimedia and interactive learning	14
Science and Mathematics	15
In search of other "tools"	17
Physics as the point of departure	22
Clarification of Objectives	24
Preliminary conclusions: the concept takes on clearer contours	28
Exercises on Chapter 1	30
Chapter 2	33
Signals in the time and frequency domain	33
The FOUDIED Dringinle	22
Pariodia assillations	31
Our earlos a FOURIER analyzer	35
FOUDED transformation: from the time domain to the	55
frequency domain and back	42
Important periodic oscillations/signals	47
Comparison of signals in the time and frequency domain	48
The confusing phase spectrum	50
Interference: nothing to be seen although everything is there	50
Opposites which have a great deal in common: sine and δ -pulse	52
Non-periodic and one-off signals	56
Pure randomness: stochastic noise	57
Noise and information	58
Exercises for Chapter 2	61
Chapter 2	65
	05
The Uncertainty Principle	65
A strange relationship between frequency and time	65
Sinusoidal signal and & pulse as a limiting case of the Uncertainty Principle	60
Why ideal filters cannot exist	70
Fraguenay manufaments in the asso of non-maria discipate	70
Near pariodia signala	/4 00
Incar-periodic signals	0U 01
Limiting and state Chart Time PDT and West 1.4	01 07
Limiting uncertainty: Short Time FFT and Wavelets	85
Exercises on Chapter 3	90

Chapter 4	99
Language as a carrier of information	99
How speech, tones and sounds are generated and perceived	107
Case study: a simple system for voice recognition	115
Refinement and optimisation phase	120
Pattern recognition	123
Exercises on Chapter 4	125
Chapter 5	127
The Symmetry Principle	127
For reasons of symmetry: negative frequencies	127
Proof of the physical existence of negative frequencies	127
Periodic spectra	135
Inverse FOURIER transformation and GAUSSian plane	138
Exercises on Chapter 5	150
	100
Chapter 6	151
System analysis	151
Sweep	153
Modern test signals	158
The δ-pulse	160
The transfer function as a locus curve	164
The step function	167
The GAUSSian pulse	173
The GAUSSian oscillation pulse	175
The Burst signal	175
The Si-function and the Si-oscillation pulse	176
Noise	170
Transients in systems	193
Fransients in Systems	100
	.100
Chapter 7	191
Linear and non-linear processes	191
System analysis and system synthesis	191
Measuring a process to reveal whether it is linear or non-linear	191
Line and space	192
Inter-disciplinary significance	192
Mirroring and projection	193
A complex component: the transistor	195
There are only few linear processes	195
Multiplication of a signal by a constant	196
Addition of two or more signals	197
Delay	197
Differentiation	199
Integration	206

Page	IX
------	----

Malicious functions or signal curves	213
Non-linear processes	220
Multiplication of two signals	220
Formation of the absolute value	221
Quantization	
Windowing	230
Exercises on Chanter 7	231
Chapter 8	233
Classical modulation procedures	233
Transmission media	233
Modulation with sinusoidal carriers	233
Modulation and demodulation in the traditional sense	234
Amplitude modulation and demodulation AM	235
Wasting energy: double sideband AM with carrier	230
Single sideband modulation without a carrier	243
Frequency multiplex	251
Mixing	
Frequency modulation FM	
Demodulation of FM-signals	
The phase locked loop PLL	
Phase modulation	
Immunity to interference of modulation processes	274
Practical information theory	
Exercises on Chapter 8	278
Chapter 9	281
Digitalisation	281
Digital technology does not always mean the same thing	281
Digital recentorogy does not arways mean the same timing	281
The gateway to the digital world: the A/D converter	
Principle of a D/A converter	
Analog pulse modulation processes	
DASV <i>I ab</i> and digital signal processing	200
Day 1 Lab and digital signal processing	
The period length of digital signals	292
The periodic spectrum of digital signals	
The Sampling Principle	
Retrieval of the analog signal	200
Non synchronicity	
Signal distortion as a result of signal windowing	
Chook list	
Everaises on Chanter 0	
Exercises on Chapter 9	

Chapter 10	319
Digital filters	319
Hardware versus software	319
How analog filters work	319
FFT filters	322
Digital filtering in the time domain	327
Convolution	331
Case study: Design and application of digital filters	333
Avoiding ripple content in the conducting state region	336
The transfer function of digital filters	343
Exercises on chapter 10	345
Chapter 11	347
Digital transmission technology l: source encoding	347
Encoding and decoding of digital signals and data	349
Compression	349
Low-loss and lossy compression	351
RLE encoding	352
HUFFMAN encoding	352
LZW encoding	353
Source encoding of audio signals	356
Delta encoding or delta modulation	356
Sigma-delta modulation or encoding (S-D-M)	361
Noise shaping and decimation filter	363
Exploiting psycho-acoustic effects (MPEG)	363
Quadrature Mirror Filter (QMF)	367
Discrete Wavelet Transformation and Multi-Scale Analysis MSA	373
Exploiting psycho-acoustic effects (MPEG)	380
Encoding and physics	386
Exercises on Chapter 11	387
Chapter 12	389
Digital transmission technology II: channel encoding	389
Error protection encoding for the reduction of bit error probability	389
Distance	390
HAMMING codes and HAMMING distance	392
Convolutional encoding	394
VITERBI decoding	398
Hard and soft decision	400
Channel capacity	402
Exercises on Chapter 12	404
Chapter 13	405
Digital Transmission Techniques III: Modulation	405
Keving of discrete states	408
Δ multiple Shift Keying (2- Δ SK)	408
Ampitude onthe Keying (2-760K)	100

Phase Shift Keying (2-PSK)	408
Frequency Shift Keying 2-FSK	410
Signal space	411
Quadrature Phase Shift Keying – QPSK	414
Digital Quadrature Amplitude Modulation (QAM)	417
Multiple Access	421
Discrete Multitone	424
Orthogonal Frequency division Multiplex (OFDM)	429
Coded OFDM (COFDM) and Digital Audio Broadcasting (DAB)	434
Global System for Mobile Communications (GSM)	436
Asymmetric Digital Subscriber Line (ADSL)	436
Spread Spectrum	439
Exercises on Chapter 13	443
Chapter 14	445
Neural networks	445
What are the applications of neural networks?	448
Backpropagation as error minimization: the search for the deepest valley	451
Creating neuronal networks with DASYLab	453
Project: nattern recognition of the signals of a function generator	459
Speech recognition as an example of complex real pattern recognition	463
Neuronal networks in industrial use	468
Neuronal networks: perspective and limitations	473
Exercises on chanter 14	476
	170
Chapter 15	479
Mathematical modelling of Signals - Processes - Systems	479
Complex numbers	479
Simple operations with complex numbers	481
Envisaging applications	489
Classification of signal processing systems	403
FOURIER- analysis of periodic signals	495
From the EOURIER- series to the EOURIER- transformation	501
Convolution and multiplication	503
Correlation and convolution	505
The WIENED KUINTSUINE theorem	505
The LADIACE transformation	510
Operator colculus	510
	513
Index	515
Bibliography	527