Contents

1 Introduction .. 1
 Brian P. Cahill
 1.1 Micro Segmented Flow: A Challenging and Very
 Promising Strategy of Microfluidics 1

Part I Generation, Manipulation and Characterization
 of Micro Fluid Segments

2 Droplet Microfluidics in Two-Dimensional Channels 7
 Charles N. Baroud
 2.1 Droplets in Linear Channels and on Two-Dimensional
 Surfaces ... 7
 2.2 Generating Droplet Arrays in Microchannels 9
 2.3 Using Surface Energy Gradients for Droplet Manipulation... 11
 2.4 Rails and Anchors 12
 2.4.1 Principle of Droplet Anchors 12
 2.4.2 The Anchor Strength 14
 2.4.3 Parking Versus Buffering Modes 16
 2.4.4 Forces Due to External Fields 17
 2.5 Making and Manipulating Two-Dimensional Arrays 18
 2.6 Active Manipulation in Two-Dimensional Geometries ... 19
 2.6.1 Actuation by Laser Beams 19
 2.6.2 Removing a Drop From an Anchor 19
 2.6.3 Selectively Filling an Array 21
 2.6.4 Initiating a Chemical Reaction on Demand
 by Laser-Controlled Droplet Fusion 21
 2.7 Using Surface Energy Gradients Without a Mean Flow 23
 2.8 Summary and Conclusions on Droplet Manipulation
 by Surface Forces 26

References .. 27
3 Electrical Switching of Droplets and Fluid Segments
Matthias Budden, Steffen Schneider, J. Michael Köhler and Brian P. Cahill

3.1 Introduction on Electrical Switching of Droplets
3.2 Droplets and Segments
3.2.1 Droplets
3.2.2 Micro Fluid Segments and Their Manipulation Without Electrical Actuation
3.3 Electrostatic Manipulation of Droplets in a Liquid Carrier
3.3.1 Droplet Charging
3.3.2 Actuation of Droplets by Static Electrical Fields
3.3.3 Droplet Sorting by Electrostatic Electrical Manipulation
3.4 Dielectric Manipulation of Droplets by Alternating Fields in a Liquid Carrier
3.4.1 Trapping of Droplets in Field Cages
3.4.2 Dielectric Actuation of Droplets by Dielectrophoresis
3.5 Manipulation of Fluid Segments by Potential Switching
3.6 Applications and Challenges for Electrical Switching of Droplets and Segments

References

4 Chip-Integrated Solutions for Manipulation and Sorting of Micro Droplets and Fluid Segments by Electrical Actuation
Lars Dittrich and Martin Hoffmann

4.1 Basics for Chip Integration of Droplet Actuators
4.1.1 Continuous Flow Analysis (CFA)
4.1.2 Digital Microfluidics (DMF)
4.1.3 Labs on a Chip (LoC) and Micro Total Analysis Systems (µTAS)
4.1.4 Combining CFA Systems with DMF Concepts
4.2 Modeling and Simulation for Electrostatic Actuation in Integrated Devices
4.2.1 General Aspects of Modeling of Electrostatic Actuation
4.2.2 Modeling of Electrostatic Actuators
4.2.3 Electrostatic Forces in Relation to Flow Forces
4.3 Technology Considerations and Fabrication of Chip Devices for Electrostatic Actuation
4.3.1 Materials and Basic Concept
4.3.2 Technology Concept and Manufacturing
4.4 Experimental Realization of Chip-Integrated Electrostatic Actuators
4.5 Summarizing Conclusions on Modeling, Realization and Application Potential of Chip-Integrated Electrostatic Actuation of Micro Fluid Segments .. 69
References .. 71

5 Electrical Sensing in Segmented Flow Microfluidics 73
Brian P. Cahill, Joerg Schemberg, Thomas Nacke and Gunter Gastrock
5.1 Introduction in to Electrical Sensing of Droplets and Micro Fluid Segments ... 73
5.2 Capacitive Sensing of Droplets .. 74
 5.2.1 Principle of Capacitive Sensing ... 74
 5.2.2 Experimental Example of Capacitive Measurements in Microfluid Segments Embedded in a Perfluorinated Carrier Liquid ... 76
5.3 Impedimetric Measurement of Conductivity in Segmented Flow 79
 5.3.1 Impedimetric Measurement Principle ... 79
 5.3.2 Finite Element Model of Non-Contact Impedance Measurement .. 80
 5.3.3 Analytical Model of Non-Contact Impedance Measurement 86
5.4 Experimental Investigation of an Inline Noncontact Impedance Measurement Sensor ... 87
 5.4.1 Impedance Measurement of Ionic Strength 87
 5.4.2 Measurement of Droplets ... 91
5.5 Microwave Sensing in Micro Fluidic Segmented Flow 91
 5.5.1 Principle of Microwave Sensing in Microfluidics 91
 5.5.2 Example of Experimental Realization if Microwave Sensing in Microsegmented Flow ... 95
5.6 Summarizing Conclusions for Electrical Characterization in Microsegmented Flow ... 97
References .. 98

Part II Chemical Application in Micro Continuous-Flow Synthesis of Nanoparticles

6 Solid Particle Handling in Microreaction Technology: Practical Challenges and Application of Microfluid Segments for Particle-Based Processes .. 103
Frederik Scheiff and David William Agar
6.1 Application of Solids in Microfluidics ... 103
6.2 Particle Transport Behavior in Micro Segmented Flow 105
6.3 Feeding of Particles and Suspensions in Microsegmented Flow .. 116
6.4 Clogging Risk and Clogging Prevention ... 123
6.5 Downstream Phase Separation .. 127
 6.5.1 General Aspects of Separation in Microsegmented Flow .. 127
 6.5.2 Micro Settlers ... 129
 6.5.3 Micro-Hydrocyclones and Curved Branches ... 129
 6.5.4 Wettability and Capillarity Separators: Membranes, Pore Combs, Branches 130
6.6 Heterogeneously Catalyzed Reactions in Microfluidic Processes 133
 6.6.1 Application of Suspension Slug Flow for Heterogeneously Catalyzed Reactions. 133
 6.6.2 Micro-Packed Bed ... 137
 6.6.3 Suspension Slug Flow Microreactor ... 138
 6.6.4 Wall-Coated Microreactor .. 139
 6.6.5 Membrane/Mesh Microreactor .. 140
6.7 Conclusion on Particle Handling and Synthesis in Micro Segmented Flow 141
References .. 141

7 Micro Continuous-Flow Synthesis of Metal Nanoparticles Using Micro Fluid Segment Technology .. 149
Andrea Knauer and J. Michael Köhler

7.1 Introduction in Metal Nanoparticle Synthesis by Micro Fluid Segment Technique 150
7.2 Requirements of the Synthesis of Metal Nanoparticles and the Specific Advantages of Micro Fluid Segment Technique Therefore .. 152
7.3 General Aspects of Particle Formation and Partial Processes of Noble Metal Nanoparticle Synthesis ... 153
7.4 Addressing of Size and Shape in a Micro Segmented Flow-Through Metal Nanoparticle Synthesis .. 156
7.5 Micro Segmented Flow Synthesis of Composed Metal Nanoparticles 170
7.6 Automated Synthesis Experiments in Large Parameter Spaces for a Variation of the Plasmonic Properties of Nanoparticles by Varied Reactant Composition in Fluid Segment Sequences .. 178
7.7 Conclusion and Outlook on Metal Nanoparticle Formation in Micro Segmented Flow .. 195
References .. 197
Part III Biological Application: Cell-Free Biotechnology, Cell Cultivation and Screening Systems

8 Characterization of Combinatorial Effects of Toxic Substances by Cell Cultivation in Micro Segmented Flow

J. Cao, D. Kürsten, A. Funfak, S. Schneider and J. M. Köhler

8.1 Introduction: Miniaturized Techniques for Biomedical, Pharmaceutical, Food and Environmental Toxicology

8.2 Advantages of Micro Segmented Flow for Miniaturized Cellular Screenings

8.3 Miniaturized Determination of Highly Resolved Dose/Response Functions

8.4 Strategy and Set-Up for Generation of 2D- and 3D-Concentration Programs

8.5 Determination of Combinatorial Effects by Characterization of Dose/Response Functions in Two-Dimensional Concentration Spaces

8.6 Multi-Endpoint Detection under Microfluidic Conditions

8.7 Interferences Between Food Components, Nanoparticles and Antibiotics

8.8 Application of Micro Fluid Segments for Studying Toxic Effects on Multicellular Organisms

8.9 Potential of the Segmented Flow Technique for Toxicology and Further Challenges

References

9 Screening for Antibiotic Activity by Miniaturized Cultivation in Micro-Segmented Flow

Emerson Zang, Miguel Tovar, Karin Martin and Martin Roth

9.1 Introduction: Antibiotics and Antimicrobial Resistance

9.2 Current State of Screening for New Antimicrobial Products

9.3 Microbial Assays in Droplet-Based Microfluidic Systems and in Micro-Segmented Flow

9.3.1 General Considerations for Microbial Assays in Droplet-Based Systems

9.3.2 Culture Media for Droplet-Based Screening

9.3.3 Detection Mechanisms for Droplet-Based Screening

9.3.4 Reporter Organisms for Droplet-Based Screening

9.3.5 Aspects of Co-cultivation of Different Microbial Species
9.4 Detection of Antibiotic Activity in Droplets and Screening for Novel Antibiotics ... 242
 9.4.1 Possibilities and Constraints of Antibiotic Screening in Droplets ... 242
 9.4.2 Screening for Novel Antibiotics in Micro-Segmented Flow ... 243
 9.4.3 Improving Robustness of Screening in Micro-Segmented Flow ... 246
9.5 Emulsion-Based Microfluidic Screenings: An Overview ... 248
 9.5.1 Droplet Generation and Handling for Highly Parallelized Operations ... 248
 9.5.2 Screening for Novel Antibiotics with an Emulsion-Based Microfluidic Approach 252
9.6 Summary and Outlook on Antimicrobial Screenings in Micro-Segmented Flow and Emulsion-Based Systems 259
References ... 261

Index ... 267