Contents to Volume 1

Preface XXIII
List of Contributors XXV

Part I RNA Synthesis and Detection 1

1 Enzymatic RNA Synthesis Using Bacteriophage T7 RNA Polymerase 3
Markus Gößringer, Dominik Helmecke, Karen Köhler, Astrid Schön,
Leif A. Kirsebom, Albrecht Bindereif, and Roland K. Hartmann

2 Production of RNAs with Homogeneous 5’- and 3’-Ends 29
Mario Mörl and Roland K. Hartmann

3 RNA Ligation 45
Janne J. Turunen, Liudmila V. Pavlova, Martin Hengesbach, Mark Helm,
Sabine Müller, Roland K. Hartmann, and Mikko J. Frilander

4 Northern Blot Detection of Small RNAs 89
Benedikt M. Beckmann, Arnold Grünweller, and Roland K. Hartmann

5 Rapid, Non-Denaturing, Large-Scale Purification of In Vitro Transcribed
RNA Using Weak Anion-Exchange Chromatography 105
Laura E. Easton, Yoko Shibata, and Peter J. Lukavsky

6 3’-Terminal Attachment of Fluorescent Dyes and Biotin 117
Dagmar K. Willkomm and Roland K. Hartmann

7 Chemical RNA Synthesis, Purification, and Analysis 129
Brian S. Sproat

8 Modified RNAs as Tools in RNA Biochemistry 151
Thomas E. Edwards and Snorri Th. Sigurdsson
Part II Structure Determination 173

9 Direct Determination of RNA Sequence and Modification by
Radiolabeling Methods 175
Olaf Gimple and Astrid Schöhn

10 Probing RNA Structure In Vitro with Enzymes and Chemicals 205
Anne-Catherine Helfer, Cédric Romilly, Clément Chevalier, Efthimia
Lioliou, Stefano Marzi, and Pascale Romby

11 Probing RNA Solution Structure by Photocrosslinking: Incorporation of
Photoreactive Groups at RNA Termini and Determination of
Crosslinked Sites by Primer Extension 231
Michael E. Harris

12 Terbium(III) Footprinting as a Probe of RNA Structure and Metal
Binding Sites 255
Dinari A. Harris, Gabrielle C. Todd, and Nils G. Walter

13 Pb²⁺-Induced Cleavage of RNA 269
Leif A. Kirsebom and Jerzy Ciesiolka

14 Identification and Characterization of Metal Ion Coordination
Interactions with RNA by Quantitative Analysis of Thiophilic Metal Ion
Rescue of Site-Specific Phosphorothioate Modifications 285
Michael E. Harris

15 Probing RNA Structure and Ligand Binding Sites on RNA by Fenton
Cleavage 301
Corina G. Heidrich and Christian Berens

16 Measuring the Stoichiometry of Magnesium Ions Bound to RNA 319
Andrew J. Andrews and Carol A. Fierke

17 Nucleotide Analog Interference Mapping and Suppression
(NAIM/NAIS): a Combinatorial Approach to Study RNA Structure,
Folding, and Interaction with Proteins 329
Olga Fedorova, Marc Boudvillain, and Christina Waldsich

18 Nucleotide Analog Interference Mapping (NAIM): Application to the
RNase P System 369
Simona Cuzic-Feltens and Roland K. Hartmann
19 Identification of Divalent Metal Ion Binding Sites in RNA/DNA-Metabolizing Enzymes by Fe(II)-Mediated Hydroxyl Radical Cleavage 397
Yan-Guo Ren, Niklas Henriksson, and Anders Virtanen

20 RNA Structure and Folding Analyzed Using Small-Angle X-Ray Scattering 407
Nathan J. Baird, Jeremey West, and Tobin R. Sosnick

21 Temperature-Gradient Gel Electrophoresis of RNA 427
Detlev Riesner and Gerhard Steger

22 UV Melting Studies with RNA 445
Philippe Dumas, Eric Ennifar, Francois Disdier, and Philippe Walter

23 RNA Crystallization 481
Jiro Kondo, Claude Sauter, and Benoit Masquida

24 Studying RNA Using Single Molecule Fluorescence Resonance Energy Transfer 499
Felix Spenkuch, Olwen Domingo, Gerald Hinze, Thomas Basché, and Mark Helm

25 Atomic Force Microscopy Imaging and Force Spectroscopy of RNA 527
Malte Bussiek, Antonie Schöne, and Wolfgang Nellen

Contents to Volume 2

Preface XXIII
List of Contributors XXV

Part III RNA Genomics & Bioinformatics, Global Approaches 547

26 Secondary Structure Prediction 549
Gerhard Steger
26.1 Introduction 549
26.2 Thermodynamics 550
26.3 Formal Background 552
26.4 mfold and UNAFold 555
26.4.1 Input to the mfold Server 556
26.4.1.1 Sequence Name 556
26.4.1.2 Sequence 556
27 RNA Secondary Structure Analysis Using Abstract Shapes 579
 Robert Giegerich and Björn Voß

27.1 Introduction to Abstract Shape Analysis 579
27.1.1 Looking Deeper into the RNA Folding Space 579
27.1.2 Overview of Functions of Abstract Shape Analysis 580
27.1.3 Definition of Shape Abstraction 580
27.1.3.1 Shapes 580
27.1.3.2 Shape Abstraction Function 581
27.1.3.3 Shape Representative Structures (shreps) 581
27.1.3.4 Levels of Abstraction 581
27.1.3.5 Shape Probabilities 582
27.1.3.6 Consensus Shape 582
27.1.4 General Caveats when Working with Abstract Shapes 582
27.1.5 Applications of Abstract Shape Analysis 583
27.2 Protocol 1: Computing Shape Representative Structures 584
27.2.1 Useful Parameters for RNAshapes 585
27.3 Protocol 2: Probabilistic Shape Analysis 585
27.3.1 Useful Parameters 587
27.4 Protocol 3: Comparative Shape Analysis from Aligned Sequences 587
27.4.1 Useful Parameters for RNAshapes 588
27.5 Protocol 4: Comparative Shape Analysis from Unaligned Sequences 588
27.5.1 Useful Parameters for RNAshapes 592
27.6 RNAshapes Parameter Overview 592
27.7 RNAlishapes Parameter Overview 593
References 594

28 Screening Genome Sequences for known RNA Genes or Motifs 595
Daniel Gautheret
28.1 Introduction 595
28.2 Choosing the Right Search Program 596
28.3 Overview of the RNA Search Procedure 597
28.4 Assessing Search Specificity 598
28.5 A Test Case: Looking for Homologs of a Bacterial sRNA 600
28.5.1 Building a First Training Set with BLASTN 600
28.5.2 Alignment and Structure Prediction 602
28.5.3 Searching with HMMER 604
28.5.4 Searching with RNAMOTIF 606
28.5.5 Searching with ERPIN 609
28.5.6 Searching with INFERNAL 614
28.6 Conclusion 615
28.7 Supplemental Data 615
28.8 Program Versions and Download Sites 616
Acknowledgments 616
References 616

29 Homology Search for Small Structured Non-coding RNAs 619
Manja Marz, Stefanie Wehner, and Peter F. Stadler
29.1 Introduction 619
29.2 Materials 619
29.2.1 Sequence Data 619
29.2.2 Web Services 620
29.2.3 Web Service-Independent Software 621
29.3 Protocol: mascRNAs 621
29.3.1 The Seed 622
29.3.2 Low-Hanging Fruits: Initial BLAST Search 623
29.3.3 Initial Secondary Structure Model 624
29.3.4 Drilling Deep – Structure-Based Searches 625
29.4 Concluding Remarks 629
Acknowledgments 630
References 630
30 Predict RNA 2D and 3D Structure over the Internet Using MC-Tools 633
Stephen Leong Koan, Jonathan Roy, Marc Parisien, and François Major

30.1 Introduction 633
30.2 Materials 634
30.2.1 Equipment 634
30.2.2 Data 634
30.3 MC-Tools 635
30.3.1 MC-Fold 635
30.3.2 MC-Cons 636
30.3.3 MC-Sym 636
30.4 Troubleshooting 663
Acknowledgments 663
References 663

31 S2S-Assemble2: a Semi-Automatic Bioinformatics Framework to Study and Model RNA 3D Architectures 667
Fabrice Jossinet and Eric Westhof

31.1 Introduction 667
31.2 S2S: an Interactive RNA Alignment Viewer and Editor 668
31.3 Assemble2: an Interactive RNA 3D Modeler 671
31.4 The Semi-Automatic Architecture of S2S and Assemble2 672
31.5 Installation of S2S and Assemble2 673
References 685

32 Molecular Dynamics Simulations of RNA Systems 687
Pascal Auffinger

32.1 Introduction 687
32.2 MD Methods 689
32.3 Simulation Setups 689
32.3.1 Selecting an Appropriate Starting Structure 689
32.3.1.1 Model-Built Structures 689
32.3.1.2 X-Ray and Neutron Diffraction Structures 689
32.3.1.3 Cryo-Electron Microscopy (Cryo-EM) Structures 690
32.3.1.4 NMR Structures 690
32.3.2 Checking the Starting Structure 690
32.3.2.1 Conformational Checks 690
32.3.2.2 Rare Non-covalent Interactions 691
32.3.2.3 Protonation Issues 692
32.3.2.4 Solvent 692
32.3.3 Adding Hydrogen Atoms 693
32.3.4 Choosing the Environment (Crystal, Liquid) and Ion Types 693
32.3.5 Setting the Box Size and Placing the Ions and Water 693
32.3.5.1 Box Size 693
32.3.5.2 Monovalent Ions 693
32.3.5.3 Divalent Ions 694
32.3.5.4 Minimal Salt Conditions 694
32.3.5.5 Water Molecules 694
32.3.5.6 Building Initial Solute and Solvent Configurations 694
32.3.6 Choosing the Program and Force Field 695
32.3.6.1 Programs 695
32.3.6.2 Force Fields 695
32.3.6.3 Parameterization of Modified Nucleotides, Ligands, and Ions 696
32.3.6.4 Clustering Artifacts and Ion Parameters 696
32.3.6.5 Water Models 696
32.3.7 Treatment of Electrostatic Interactions 697
32.3.8 Other Simulation Parameters 697
32.3.8.1 Thermodynamic Ensemble 697
32.3.8.2 Temperature and Pressure 698
32.3.8.3 Shake, Time Steps, and Update of the Non-bonded Pair List 698
32.3.8.4 The "Flying Ice Cube Problem" 698
32.3.9 Equilibration 699
32.3.10 Sampling 699
32.3.10.1 How Long Should a Simulation Be? 699
32.3.10.2 When to Stop a Simulation 700
32.3.10.3 Multiple Molecular Dynamics (MMD) Simulations 701
32.3.10.4 Simulations of Large Systems 701
32.4 Analysis 701
32.4.1 Evaluating the Quality of the Trajectories 701
32.4.1.1 Consistency Checks 702
32.4.1.2 Comparison with Experimental Data 702
32.4.1.3 Visualization 702
32.4.1.4 Validation through Statistical Survey of Structural Databases 703
32.4.2 Convergence Issues 703
32.4.3 Conformational Parameters 703
32.4.4 Data Analysis 704
32.4.4.1 Clustering 704
32.4.4.2 Analysis Packages 704
32.4.4.3 Solvent Analysis 704
32.5 Perspectives 704
Acknowledgments 705
References 705

33 Identification and Characterization of Small Non-coding RNAs in Bacteria 719
Dimitri Podkaminski, Marie Bouvier, and Jörg Vogel
33.1 Introduction 719
33.2 Expression-Based Discovery of sRNAs 720
Experimental RNomics, a Global Approach to Identify Non-coding RNAs in Model Organisms, and RNomics to Analyze the Non-coding RNP Transcriptome 801

Mathieu Rederstorff and Alexander Hüttenhofer

35.1 Introduction 801
35.2 Computational Analysis of ncRNA Sequences 811
35.3 Notes 812
35.4 Computational Analysis of ncRNA Sequences 816
35.5 Notes 816

Acknowledgments 817
References 817

Computational Methods for Gene Expression Profiling Using Next-Generation Sequencing (RNA-Seq) 821

John C. Castle

36.1 Introduction 821
36.2 Procedure Overview 822
36.2.1 Understand the Experiment and the Molecular Biology Protocol 823
36.2.1.1 Library Generation 823
36.2.2.1.2 Sequencing 825
36.2.2 Align Reads 826
36.2.3 Associate Reads with Transcripts 827
36.2.4 Determine Expression and Uncertainty 828
36.2.5 Normalization 828
36.2.6 Output and Viewing 828
36.2.7 Troubleshooting 829
36.2.8 The Future Is Bright! 830
36.3 Protocols: Useful Algorithms, Formats, and Tools 830
References 830

Characterization and Prediction of miRNA Targets 833

Jean Hausser and Mihaela Zavolan

37.1 Introduction 833
37.2 Description 834
37.2.1 Building a Set of "Positives" and "Negatives"; Obtaining Examples of Functional and Non-functional miRNA Binding Sites 835
37.2.1.1 Comparative genomics 836
37.2.1.2 miRNA perturbation and omics 837
37.2.1.3 Immunoprecipitation of RISC components 838
37.2.1.4 Measuring translation repression directly with polysome profiles 839
37.2.1.5 Which data set should one use for inferring properties that characterize functional miRNA binding sites? 839
37.2.2 Properties of Functional miRNA Binding Sites 840
37.2.2.1 The "seed" binding criterion 840
37.2.2.2 Evolutionary conservation 841
37.2.2.3 Stability of the miRNA–mRNA duplex 841
37.2.2.4 Structural accessibility 841
37.2.2.5 Sequence composition 842
37.2.2.6 Spatial effects 842
37.2.3 Combining Properties and Examples into a Predictive Model 843
37.2.3.1 Inferring properties that consistently predict miRNA targeting across data sets 843
37.2.3.2 Training a miRNA target prediction model 846
37.3 Troubleshooting 847
37.3.1 Using miRNA target predictions in an experimental setting 847
37.3.1.1 How accurate are miRNA target predictions? 848
37.3.1.2 Which miRNA target prediction method should I use? 849
37.3.1.3 How many targets does a miRNA have? 850
37.3.1.4 Why does a particular high-confidence predicted target not change in response to miRNA overexpression? 850
37.3.1.5 Transcript x is a target of miRNA y according to method z, yet it does not have an “miRNA y seed match” in the 3’ UTR 850
37.3.1.6 The list of targets predicted by method x has a different type of identifiers (Entrez Gene ID/RefSeq ID/Ensembl transcript/….) than the list predicted by method y or the list that one obtains in a large-scale validation experiment (e.g., microarray measurement) 851
37.3.2 The Complexity of Gene Regulation and its Impact on Designing Accurate miRNA Target Prediction Methods 851
References 853

38 Barcoded cDNA Libraries for miRNA Profiling by Next-Generation Sequencing 861
Markus HaJfer, Neil Renwick, John Pena, Aleksandra Mihailovic, and Thomas Tuschl
38.1 Introduction 861
38.2 Overview of the Method 862
38.3 Troubleshooting 872
Acknowledgments 872
References 872

39 Transcriptome-Wide Identification of Protein Binding Sites on RNA by PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation) 877
Jessica I. Hoell, Markus Hafner, Markus Landthaler, Manuel Ascano, Thalia A. Farazi, Greg Wardle, Jeff Nusbaum, Pavol Cekan, Mohsen Khorshid, Lukas Burger, Mihaela Zavolan, and Thomas Tuschl
39.1 Introduction 877
39.2 Troubleshooting 897
Global Analysis of Protein–RNA Interactions with Single-Nucleotide Resolution Using iCLIP

Julian König, Nicholas J. Mc Glincy, and Jernej Ule

40.1 Introduction 899
40.2 Procedure 900
40.2.1 Overview 900
40.2.2 Antibody and Library Preparation Quality Control 902
40.2.3 Oligonucleotide Design 903
40.2.4 Troubleshooting 904
Acknowledgments 917
References 917

Part IV RNA Function, RNP Analysis, SELEX, RNAi 919

Use of RNA Affinity Matrices for the Isolation of RNA Binding Proteins

Markus Englert, Bettina Späth, Steffen Schiffer, Sylvia Rösch, Hildburg Beier, and Anita Marchfelder

41.1 Introduction 921
41.2 Applications 927
41.2.1 Purification of the Nuclear tRNase Z from Wheat Germ 927
41.2.2 Purification of the tRNA-Splicing Ligase from Wheat Germ 930
41.3 Notes 932
References 932

Biotin-Based Affinity Purification of RNA–Protein Complexes

Marco Preußner, Silke Schreiner, Inna Grishina, Zsofia Palfi, Jingyi Hui, and Albrecht Bindereif

42.1 Introduction 935
42.2 Materials 937
42.2.1 Biotinylated Probes 937
42.2.2 Affinity Matrices 937
42.2.3 Cell Extracts 938
42.2.4 Buffers and Solutions 938
42.2.5 Additional Materials 939
42.3 Methods 939
42.3.1 Affinity Purification of RNA–Protein Complexes (RNPs) 939
42.3.1.1 Depletion of Total Cell Lysate from SAg-Binding Material (Preclearing) 940
42.3.1.2 Preblocking Streptavidin Agarose Beads 941
42.3.1.3 Affinity Selection of RNPs for Biochemical Studies 941

Acknowledgments 897
References 897
42.3.1.4 Elution of Affinity-Selected RNPs for Functional Studies by a Displacement Oligonucleotide 945
42.3.2 Affinity Purification of Specific RNA Binding Proteins by Biotinylated RNAs 948
42.3.3 Depletion of Nuclear Extract with Biotinylated RNA 951
42.4 Troubleshooting 952
42.4.1 Biotinylated 2′OMe RNA Oligonucleotides 952
42.4.2 Extracts and Buffers 952
42.4.3 Optimization of the Experimental Conditions, When Yields Are Low 952
42.4.4 Optimization of the Experimental Conditions in the Case of High Background 953
References 953

43 Affinity Purification of Spliceosomal and Small Nuclear Ribonucleoprotein Complexes 957
Julia Dannenberg, Patrizia Fabrizio, Cindy L. Will, and Reinhard Lührmann
43.1 Introduction 957
43.2 Immunoaffinity Purification 958
43.2.1 Generation of Antipeptide Antibodies: Peptide Selection Criteria 958
43.3 RNA Aptamer-Based Affinity Purification 963
43.3.1 Approaches for the Isolation of Native Spliceosomal Complexes 963
Acknowledgments 971
References 972

44 Study of RNA–Protein Interactions and RNA Structure in Ribonucleoprotein Particles (RNPs) 975
Virginie Marchand, Annie Mougir, Agnès Méréau, Isabelle Behm-Ansmant, Yuri Motorin, and Christiane Branlant
44.1 Introduction 975
44.2 Methods 978
44.2.1 RNP Reconstitution 978
44.2.1.1 Equipment, Materials, and Reagents 978
44.2.1.2 RNA Preparation and Renaturation Step 980
44.2.2 EMSA 981
44.2.2.1 EMSA Method 981
44.2.2.2 Supershift Method 983
44.2.2.3 Identification of Proteins Contained in RNP by EMSA Experiments Coupled to a Second Gel Electrophoresis and Western Blot Analysis 984
44.2.3 Purification of RNPs Reconstituted in Complex Cellular Extracts 986
44.2.4 Methods for RNP Purification Using Tobramycin–Sepharose or MS2-MBP Affinity Chromatography 987
44.2.4.1 Equipment and Materials Common to the Two Approaches 987
44.2.4.2 RNP Purification Using Tobramycin-Sepharose 987
44.2.4.3 Formation of RNPs in the Cellular Extract 989
44.2.4.4 Elution of Purified RNPs under Native Conditions 989
44.2.4.5 MS2-MBP Affinity Chromatography 989
44.2.4.6 Elution and Analysis of Purified RNPs 990
44.2.4.7 Analysis of the Purified RNP Protein Content 990
44.2.5 Probing of RNA Structure 991
44.2.5.1 Properties of the Probes Used 991
44.2.5.2 Equipment, Material, and Reagents 993
44.2.5.3 Probing Method 994
44.2.6 UV Crosslinking and Immunoselection 999
44.2.6.1 Equipment, Materials, and Reagents 1000
44.2.6.2 UV-Crosslinking Method 1003
44.3 Commentaries and Pitfalls 1005
44.3.1 RNP Purification and Reconstitution 1005
44.3.1.1 RNA Purification and Renaturation 1005
44.3.1.2 EMSA 1005
44.3.1.3 Tobramycin-Sepharose Affinity Chromatography 1006
44.3.2 Probing Conditions 1006
44.3.2.1 Choice of the Probes Used 1006
44.3.2.2 Ratio of RNA/Probes 1007
44.3.3 UV Crosslinking 1008
44.3.3.1 Photoreactivity of Individual Amino Acids and Nucleotide Bases 1008
44.3.3.2 Labeled Nucleotide in RNA 1008
44.3.4 Immunoprecipitations 1008
44.3.4.1 Efficiency of Immunoadsorbents for Antibody Binding 1008
44.4 Troubleshooting 1008
44.4.1 RNP Purification by Tobramycin-Sepharose or MS2-MBP Affinity Chromatography 1008
44.4.2 RNP Reconstitution 1009
44.4.3 RNA Probing 1009
44.4.4 UV Crosslinking 1009
44.4.5 Immunoprecipitations 1009
Acknowledgments 1010
References 1010

45 Immunopurification of Endogenous RNAs Associated with RNA Binding Proteins In vivo 1017
Minna-Liisa Ånkö and Karla M. Neugebauer
45.1 Introduction 1017
45.2 Description of Methods 1017
45.2.1 Overview 1017
45.2.2 Analysis of Coimmunoprecipitated RNA 1022
45.2.2.1 Microarray Analysis of Immunopurified RNA 1022
45.2.2.2 RT-PCR Analysis of Immunopurified RNA 1024
45.2.2.3 Next-Generation Sequencing of Immunopurified RNA 1025
45.3 Troubleshooting 1025
45.3.1 Critical Points and Common Problems 1025
45.3.2 Uncrosslinked or Crosslinked RNA Immunoprecipitation 1026
45.3.3 Microarray Data Analysis 1026
45.4 Conclusions 1027
Acknowledgments 1027
References 1027

46 Protein–RNA Crosslinking in Native Ribonucleoprotein Particles 1029
Olexandr Dybkov, Henning Urlaub, and Reinhard Lührmann
46.1 Introduction 1029
46.2 Overall Strategy 1030
46.3 UV Crosslinking 1031
46.4 Identification of UV-Induced Protein–RNA Crosslinking Sites by Primer Extension Analysis 1033
46.5 Identification of Crosslinked Proteins 1037
46.6 Troubleshooting 1040
Acknowledgments 1050
References 1050

47 Sedimentation Analysis of Ribonucleoprotein Complexes 1055
Tanja Rosel, Jan Medenbach, Andrey Damianov, Silke Schreiner, and Albrecht Bindereif
47.1 Introduction 1055
47.2 Glycerol Gradient Centrifugation 1056
47.3 Fractionation of Ribonucleoproteins (RNPs) by Cesium Chloride Density Gradient Centrifugation 1061
References 1065

48 Identification and Characterization of RNA Binding Proteins through Three-Hybrid Analysis 1067
Felicia Scott and David R. Engelke
48.1 Introduction 1067
48.2 Basic Strategy of the Method 1068
48.3 Detailed Components 1070
48.3.1 Yeast Reporter Strain 1070
48.3.2 Plasmids 1070
48.3.3 Hybrid RNA 1071
48.3.3.1 Technical Considerations for the Hybrid RNA 1071
48.3.4 Activation Domain FP2 1073
48.3.4.1 Technical Considerations for the Activation Domain of FP2 1074
48.3.5 Positive Controls 1075
48.4 Troubleshooting 1079
51.4.3 In Vitro Transcription 1153
51.5 Partitioning 1154
51.6 Binding Assays 1159
51.6.1 Equilibrium Dialysis 1159
51.6.2 Equilibrium Filtration Analysis 1160
51.6.3 Isocratic Competitive Affinity Chromatography 1161
References 1162

52 SELEX Strategies to Identify Antisense and Protein Target Sites in RNA or hnRNP Complexes 1165
Martin Lützelberger, Martin R. Jakobsen, and Jørgen Kjems
52.1 Introduction 1165
52.1.1 Applications for Antisense 1166
52.1.2 Selecting Protein Binding Sites 1166
52.2 Construction of the Library 1166
52.2.1 Generation of Random DNA Fragments from Genomic or Plasmid DNA 1168
52.2.2 Preparing RNA Libraries from Plasmid, cDNA, or Genomic DNA 1168
52.3 Identification of Optimal Antisense Annealing Sites in RNAs 1169
52.4 Identification of Natural RNA Substrates for Proteins and Other Ligands 1171
52.5 Cloning, Sequencing, and Validating the Selected Inserts 1171
52.6 Troubleshooting 1172
52.6.1 Sonication of Plasmid DNA does not Yield Shorter Fragments 1172
52.6.2 Inefficient Ligation 1172
52.6.3 Inefficient Mme I Digestion 1172
52.6.4 The Amplification of the Unselected Library is Inefficient 1173
52.6.5 The Library Appears to be Non-Random in the Unselected Pool 1173
52.6.6 The Selected RNAs do not Bind to Native Protein 1173
References 1182

53 Genomic SELEX 1185
Jennifer L. Boots, Katarzyna Matyła-Kulinska, Marek Zywicki, Bob Zimmermann, and Renée Schroeder
53.1 Introduction 1185
53.2 Description of the Methods 1186
53.2.1 Library Construction 1186
53.2.2 Choice of Bait 1188
53.2.3 SELEX Procedure 1188
53.2.3.1 Transcription of Genomic Library into RNA Library 1190
53.2.3.2 Counter Selection 1190
53.2.3.3 Positive Selection 1190
53.2.3.4 Recovery and Amplification of Selected Sequences 1191
53.2.3.5 Neutral SELEX 1192
53.2.3.6 Cloning and Sequencing 1194
53.2.4 Troubleshooting 1194
53.3 Evaluation of Obtained Sequences 1194
53.3.1 Computational Analysis of SELEX-Derived Sequences 1194
53.3.1.1 Read Filtering and Cleaning 1196
53.3.1.2 Genome Mapping 1196
53.3.1.3 Assembly and Annotation 1197
53.3.1.4 Enrichment Analysis 1197
53.3.1.5 Benefits of Sequencing the Initial Library 1198
53.3.1.6 Identification of the Binding Motif 1198
53.3.2 Biochemical Analysis of the Genomic Aptamers 1199
53.3.2.1 Validation of the RNA–Protein Interaction 1199
53.3.2.2 Expression Analysis of Genomic Aptamers 1199
53.3.2.3 Reconstruction of the Whole-Transcript-Comprising Genomic Aptamer 1200
53.3.2.4 Determining the Function of the RNA–Protein Interaction 1200
53.4 Conclusions and Outlook 1202
Acknowledgments 1202
References 1202

54 In vivo SELEX Strategies 1207
Thomas A. Cooper
54.1 Introduction 1207
54.2 Procedure Overview 1208
54.2.1 Design of the Randomized Exon Cassette 1210
54.2.2 Design of the Minigene 1212
54.2.3 RT-PCR Amplification 1213
54.2.4 Monitoring for Enrichment of Exon Sequences That Function as Splicing Enhancers 1213
54.2.5 Troubleshooting 1214
Acknowledgments 1218
References 1219

55 Gene Silencing Methods Using Vector-Encoded siRNAs or miRNAs 1221
Ying Poi Liu and Ben Berkhout
55.1 Introduction 1221
55.2 Background Information 1221
55.3 Construction of shRNA Vectors 1223
55.4 Construction of miRNA Vectors 1228
55.5 Construction of Extended shRNAs and lhRNAs 1229
55.6 Production of Lentiviral Vectors Encoding Anti-HIV-1 shRNAs or e-shRNAs 1230
55.6.1 Troubleshooting 1234
References 1235