Contents

Foreword XI

1 Introduction 1
References 3

2 Plasmonic Effects 5
2.1 Electrical Conductivity in Metal 5
2.1.1 Drude Model 6
2.1.2 Drude–Lorentz Model 6
2.1.3 Drude–Sommerfeld Model 6
2.2 Optical Properties and Dielectric Constant 7
2.3 Plasmons 9
2.4 Volume Plasmons 9
2.5 Surface Plasmons and Applications in Life Sciences 9
2.5.1 Surface Plasmons in a Flat Metallic Film 9
2.5.2 Biosensor Applications 12
2.6 Localized Surface Plasmon 13
2.6.1 LSP in Spherical Nanoparticles 15
2.6.2 LSP in Nanorods 18
2.6.3 LSP in Other Shapes 19
2.6.4 Influence of Environment on LSPR 22
2.6.5 Effects of Other Parameters on Resonance 25
2.6.5.1 Composition 25
2.6.5.2 Charge 26
2.6.5.3 Neighboring Particles 26
2.6.6 Field Enhancement, Damping, Dephasing Time, Line Width 27
2.7 Combination of SPR and LSPR Approaches 30
2.8 Nanoholes 30
2.8.1 Nanoholes in Plasmonically Active Metal Films 30
2.8.1.1 Arrays 30
2.8.1.2 Single Holes 32
2.8.2 Nanoholes in Other Materials 32
2.9 Enhanced Spectroscopies 35
2.9.1 Metal Enhanced Fluorescence 36
2.9.2 Enhanced Raman Scattering 38
2.9.2.1 Raman Spectroscopy 38
2.9.2.2 SERS 39
2.9.2.3 TERS 43
2.9.2.4 SEIRA 45
References 46

3 Nanofabrication of Metal Structures 51
3.1 Introduction 51
3.2 Nanofabrication: Top-Down 52
3.2.1 Lithography 52
3.2.1.1 Thin Film Technology and Adhesion Layer 53
3.2.1.2 Optical Lithography 54
3.2.1.3 Electron Beam Lithography (EBL) 54
3.2.1.4 Focused Ion Beam (FIB) 54
3.2.2 Modern Nanofabrication Techniques 55
3.2.2.1 Scanning Probe Techniques (STM, AFM, SNOM, Dip pen) 55
3.2.2.2 Soft Lithography 55
3.2.2.3 Nanoimprinting 56
3.2.2.4 Nanostructure Lithography 56
3.2.2.5 Release of Surface-Bound Nanostructures into Solution 56
3.3 Bottom-Up Approaches 57
3.3.1 Physical: Gas-Phase Based Growth (Aerosol Process) 57
3.3.1.1 Mechanism of Particle Formation 57
3.3.1.2 Evaporation/Condensation and Island Film Preparation 58
3.3.1.3 Laser Ablation 58
3.3.2 Chemical: Condensed-Phase Fabrication 59
3.3.2.1 Introduction 59
3.3.2.2 Mechanism of Particle Generation 59
3.3.2.3 Stability of Small Metal Clusters 60
3.3.2.4 Stabilization 60
3.3.2.5 Single-Phase Synthetic Approaches 61
3.3.2.6 Two-Phase Synthesis 61
3.3.2.7 Synthesis in Confined Microenvironments 62
3.3.2.8 Size Control by Synthesis 63
3.3.2.9 Layered and/or Mixed Composition 64
3.3.2.10 Shape Control: Anisotropic Structures 66
3.3.2.11 Shape Control: Hard and Soft Templating 71
3.3.2.12 Enzyme-Mediated Nanoparticle Formation and Growth 72
3.3.2.13 Biosynthesis 73
3.3.2.14 Chemical: Solid-Phase Fabrication 73
3.4 Post-Processing, Combination, and Integration 74
3.4.1 Increased Monodispersity by Wet-Chemical Post-treatment 74
3.4.2 Radiation-Based Post-Processing for Size Tailoring 75
6.1.2.3 Single-Particle Labels 119
6.1.3 Photothermal Imaging 120
6.1.4 Photoacoustic Imaging 120
6.1.5 Fluorescent Particles 121
6.1.6 Other Plasmonic Labels 121
6.2 Sensor 121
6.2.1 Plasmonic Nanoparticle Sensor 121
6.2.2 Sensitivity 122
6.2.3 Comparison SPR-LSPR 125
6.2.4 LSPR Sensing of Refractive Index of a Homogeneous Environment (Bulk Refractive Index Sensing) 126
6.2.5 Based on Change in Interparticle Distance 126
6.2.5.1 Aggregation Assay 127
6.2.5.2 Dissociation Assay 128
6.2.5.3 Molecular Ruler 129
6.2.5.4 Strain Sensor 129
6.2.6 Molecular Layer (Molecular Refractive Index Sensing) 130
6.2.6.1 Ensemble Sensors 130
6.2.6.2 Single-Particle Sensorics 132
6.2.6.3 Ensemble versus Single-Particle Measurements 133
6.2.6.4 Parallelization of (Single) Particle LSPR Sensoric 133
6.2.7 Nanohole Sensing 134
6.3 Local Field Control by Plasmonic Nanostructures 134
6.3.1 Fluorescence Quenching and FRET 135
6.3.2 Plasmonic Resonance Energy Transfer (PRET) 137
6.3.3 Fluorescence Enhancement 137
6.3.4 Surface-Enhanced Raman Scattering (SERS) 139
6.3.4.1 Surface-Enhanced Raman Scattering (SERS) for Analyte Detection 139
6.3.4.2 SERS Label 141
6.3.4.3 Tip-Enhanced Raman Scattering (TERS) 142
6.4 Light-Induced Manipulation 143
6.4.1 Nanoantenna-Effect 143
6.4.1.1 Mechanism 143
6.4.1.2 Thermal DNA Analysis 144
6.4.1.3 Hyperthermal Treatment 145
6.4.1.4 Other Thermal Manipulation at the Tissue Level 146
6.4.1.5 Manipulation at the Sub-cellular Level 147
6.4.2 Release of Drugs and Other Active Molecules 148
References 150

7 Molecular Plasmonics for Nanooptics and Nanotechnology 157
7.1 Plasmonic Lithography 157
7.2 Nanopositioning for Nanooptics 159
7.3 Nanopositioning for Ultrasensitive Bioanalytics 163