Contents

1. **Introduction** — 1

1.1 Two-Dimensional versus Three-Dimensional Structures — 1

1.1.1 Two-Dimensional Structures in Early History of Organic Chemistry — 1

1.1.2 Three-Dimensional Structures After Beginning of Stereochemistry — 2

1.1.3 Arbitrary Switching Between 2D-Based and 3D-Based Concepts — 2

1.2 Problematic Methodology for Categorizing Isomers and Stereoisomers — 4

1.2.1 Same or Different — 5

1.2.2 Dual Definition of Isomers — 6

1.2.3 Positional Isomers as a Kind of Constitutional Isomers — 9

1.3 Problematic Methodology for Categorizing Enantiomers and Diastereomers — 10

1.3.1 Enantiomers — 10

1.3.2 Diastereomers — 11

1.3.3 Chirality and Stereogenicity — 16

1.4 Total Misleading Features of the Traditional Terminology on Isomers — 16

1.4.1 Total Misleading Flowcharts — 17

1.4.2 Another Flowchart With Partial Solutions — 18

1.4.3 More Promising Way — 20

1.5 Isomer Numbers — 20

1.5.1 Combinatorial Enumeration as 2D Structures — 21

1.5.2 Importance of the Proligand-Promolecule Model — 21

1.5.3 Combinatorial Enumeration as 3D Structures — 22

1.6 Stereoisograms — 23

1.6.1 Stereoisograms as Diagrammatic Expressions of RS-Stereoisomeric Groups — 23

1.6.2 Theoretical Foundations and Group Hierarchy — 23

1.6.3 Avoidance of Misleading Standpoints of R/S-Stereodescriptors — 24

1.6.4 Avoidance of Misleading Standpoints of $pro-R/pro-S$-Descriptors — 25

1.6.5 Global Symmetries and Local Symmetries — 25

1.6.6 Enumeration under RS-Stereoisomeric Groups — 28

1.7 Aims of Mathematical Stereochemistry — 28

References — 29
Contents

8.6 Enumeration of Alkanes (Trees) as Graphs or Constitutional Isomers — 226

8.6.1 Alkanes as Centroidal and Bicentroidal Trees — 226

8.6.2 Enumeration of Centroidal Alkanes (Trees) as Constitutional Isomers — 227

8.6.3 Enumeration of Bicentroidal Alkanes (Trees) as Constitutional Isomers — 228

8.6.4 Total Enumeration of Alkanes (Trees) as Graphs or Constitutional Isomers — 231

References — 231

9. Permutation-Group Symmetry — 233

9.1 Historical Comments — 233

9.2 Permutation Groups — 235

9.2.1 Permutation Groups as Subgroups of Symmetric Groups — 235

9.2.2 Permutations vs. Reflections — 236

9.3 RS-Permutation Groups — 238

9.3.1 RS-Permutations and RS-Diastereomeric Relationships — 238

9.3.2 RS-Permutation Groups vs. Point Groups — 239

9.3.3 Formulation of RS-Permutation Groups — 244

9.3.4 Action of RS-Permutation Groups — 245

9.3.5 Misleading Features of the Conventional Terminology — 248

9.4 RS-Permutation Groups for Skeletons of Ligancy 4 — 252

9.4.1 RS-Permutation Group for a Tetrahedral Skeleton — 252

9.4.2 RS-Permutation Group for an Allene Skeleton — 261

9.4.3 RS-Permutation Group for an Ethylene Skeleton — 265

References — 271

10. Stereoisograms and RS-Stereoisomers — 273

10.1 Stereoisograms as Integrated Diagrammatic Expressions — 273

10.1.1 Elementary Stereoisograms of Skeletons with Position Numbering — 273

10.1.2 Stereoisograms Based on Elementary Stereoisograms — 280

10.2 Enumeration Under RS-Stereoisomeric Groups — 287

10.2.1 Subgroups of the RS-Stereoisomeric Group $C_{3v\sigma\tilde{i}}$ — 287

10.2.2 Coset Representations — 290

10.2.3 Mark Table and its Inverse — 291

10.2.4 Subduction for RS-Stereoisomeric Groups — 292

10.2.5 USCI-CFs for RS-Stereoisomeric Groups — 294

10.2.6 SCI-CFs for RS-Stereoisomeric Groups — 297

10.2.7 The PCI Method for RS-Stereoisomeric Groups — 297

10.2.8 Type-Itemized Enumeration by the PCI Method — 301
10.2.9 Gross Enumeration Under RS-Stereoisomeric Groups — 303
10.3 Comparison with Enumeration Under Subgroups — 305
10.3.1 Comparison with Enumeration Under Point Groups — 305
10.3.2 Comparison with Enumeration Under RS-Permutation Groups — 307
10.3.3 Comparison with Enumeration Under Maximum-Chiral Point Subgroups — 309
10.4 RS-Stereoisomers as Intermediate Concepts — 311
References — 312

11. Stereoisograms for Tetrahedral Derivatives — 313
11.1 RS-Stereoisomeric Group $T_{d\bar{3}T}$ and Elementary Stereoisogram — 313
11.2 Stereoisograms of Five Types for Tetrahedral Derivatives — 315
11.2.1 Type-I Stereoisograms of Tetrahedral Derivatives — 315
11.2.2 Type-II Stereoisograms of Tetrahedral Derivatives — 317
11.2.3 Type-III Stereoisograms of Tetrahedral Derivatives — 318
11.2.4 Type-IV Stereoisograms of Tetrahedral Derivatives — 319
11.2.5 Type-V Stereoisograms of Tetrahedral Derivatives — 320
11.3 Enumeration Under the RS-Stereoisomeric Group $T_{d\bar{3}T}$ — 322
11.3.1 Non-Redundant Set of Subgroups and Five Types of Subgroups — 322
11.3.2 Subduction of Coset Representations — 325
11.3.3 The PCI Method for the RS-Stereoisomeric Group $T_{d\bar{3}T}$ — 327
11.3.4 Type-Itemized Enumeration by the PCI Method — 332
11.4 Comparison with Enumeration Under Subsymmetries — 334
11.4.1 Enumeration of Tetrahedral Promolecules Under the Point-Group Symmetry — 334
11.4.2 Enumeration of Tetrahedral Promolecules Under the RS-Permutation-Group Symmetry — 336
11.4.3 Comparison with Enumeration Under Maximum-Chiral Point Subgroups — 338
11.4.4 Confusion Between the Point-Group Symmetry and the RS-Permutation-Group Symmetry — 339
References — 340

12. Stereoisograms for Allene Derivatives — 341
12.1 RS-Stereoisomeric Group $D_{2d\bar{3}T}$ and Elementary Stereoisogram — 341
12.2 Stereoisograms of Five Types for Allene Derivatives — 343
12.2.1 Type-I Stereoisograms of Allene Derivatives — 343
12.2.2 Type-II Stereoisograms of Allene Derivatives — 345
12.2.3 Type-III Stereoisograms of Allene Derivatives — 347

References — 340
12.2.4 Type-IV Stereoisograms of Allene Derivatives — 349
12.2.5 Type-V Stereoisograms of Allene Derivatives — 350
12.3 Enumeration Under the RS-Stereoisomeric Group $D_{2d\tilde{a}\tilde{t}}$ — 352
12.3.1 Non-Redundant Set of Subgroups and Five Types of Subgroups — 352
12.3.2 Subduction of Coset Representations — 355
12.3.3 The PCI Method for the RS-Stereoisomeric Group $D_{2d\tilde{a}\tilde{t}}$ — 355
12.3.4 Type-Itemized Enumeration by the PCI Method — 360
12.4 Comparison with Enumeration Under Subsymmetries — 362
12.4.1 Enumeration of Allene Promolecules Under the Point-Group Symmetry — 362
12.4.2 Enumeration of Allene Promolecules Under the RS-Permutation-Group Symmetry — 363

References — 364

13. **Stereochemical Nomenclature** — 365
13.1 Absolute Configuration — 365
13.1.1 Single Pair of Attributes ‘Chirality/Achirality’ in Modern Stereochemistry — 365
13.1.2 Three Pairs of Attributes in Fujita's Stereoisogram Approach — 366
13.1.3 Three Aspects of Absolute Configuration — 367
13.2 Quadruplets of RS-Stereoisomers as Equivalence Classes — 368
13.2.1 Three Types of Pairwise Relationships in a Quadruplet of RS-Stereoisomers — 368
13.2.2 Formulation of Stereoisograms as Quadruplets of RS-Stereoisomers — 370
13.3 Inner Structures of Promolecules — 370
13.3.1 Inner Structures of RS-Stereogenic Promolecules — 371
13.3.2 Inner Structures of RS-Astereogenic Promolecules — 374
13.4 Assignment of Stereochemical Nomenclature — 376
13.4.1 Single Criterion for Giving RS-Stereodescriptors — 377
13.4.2 RS-Diastereomers: the CIP Priority System — 378
13.4.3 R/S-Stereodescriptors and Stereoisograms — 380
13.4.4 Chirality Faithfulness — 382
13.4.5 Stereochemical Notations for Other Skeletons — 384

References — 385

14. **Pro-RS-Stereogenicity Based on Orbits** — 387
14.1 Prochirality vs. Pro-RS-Stereogenicity — 387
14.1.1 Prochirality as a Geometric Concept — 387
14.1.2 Pro-RS-Stereogenicity as a Stereoisomeric Concept — 388
14.1.3 Prochirality and Pro-RS-Stereogenicity for Tetrahedral Derivatives — 388
14.2 Orbits under RS-Permutation Groups — 388
14.2.1 RS-Tropicity — 388
14.2.2 Pro-RS-Stereogenicity as a Stereoisomeric Concept — 390
14.3 pro-R/pro-S-Descriptors — 392
14.3.1 RS-Diastereotopic Relationships — 392
14.3.2 Single Criterion for Giving pro-R/pro-S-descriptors — 393
14.3.3 Probe Stereoisograms for Assigning pro-R/pro-S-Descriptors — 394
14.3.4 Misleading Interpretation of ‘Prochirality’ in Modern Stereochemistry — 396
14.4 Pro-RS-Stereogenicity Distinct From Prochirality — 398
14.4.1 Simultaneity of Prochirality and Pro-RS-Stereogenicity in a Type-IV Promolecule — 398
14.4.2 Coincidence of Prochirality and Pro-RS-stereogenicity — 400
14.4.3 Prochiral (but Already RS-Stereogenic) Promolecules — 402
14.5 Pro-RS-Stereogenicity for pro-R/pro-S-Descriptors 403
References — 404

15. Perspectives — 405
15.1 Enumeration of Highly Symmetric Molecules — 405
15.2 Interaction of Orbits of Different Kinds — 405
15.3 Correlation Diagrams of Stereoisograms — 406
15.4 Group Hierarchy — 407
15.5 Non-Rigid Molecules and Conformations — 409
15.6 Interdisciplinary Nature of Mathematical Stereochemistry — 409
15.6.1 Mathematical and Stereochemical Barriers In Practical Levels — 410
15.6.2 Mathematical and Stereochemical Barriers In Conceptual Levels — 411
15.7 Reorganizing the Theoretical Foundations of Stereochemistry and Stereoisomerism — 411
References — 412

Index — 415