PROCESS SCALE PURIFICATION OF ANTIBODIES
CONTENTS

PREFACE xxiii

LIST OF CONTRIBUTORS xxvii

1 Downstream Processing of Monoclonal Antibodies: Current Practices and Future Opportunities 1

Brian Kelley

1.1 Introduction 1
1.2 A Brief History of Current Good Manufacturing Process mAb and Intravenous Immunoglobulin Purification 2
1.3 Current Approaches in Purification Process Development: Impact of Platform Processes 4
1.4 Typical Unit Operations and Processing Alternatives 7
1.5 VLS Processes: Ton-Scale Production and Beyond 10
1.6 Process Validation 12
1.7 Product Life Cycle Management 13
1.8 Future Opportunities 16
1.9 Conclusions 18
 Acknowledgments 19
 References 19

2 The Development of Antibody Purification Technologies 23

John Curling

2.1 Introduction 23
2.2 Purification of Antibodies by Chromatography Before Protein A 25
CONTENTS

2.3 Antibody Purification After 1975 28
2.4 Additional Technologies for Antibody Purification 31
2.5 Purification of mAbs Approved in North America and Europe 34
2.6 Current Antibody Process Technology Developments 40
Acknowledgments 45
References 46

3 Harvest and Recovery of Monoclonal Antibodies:
Cell Removal and Clarification 55
Abhinav A. Shukla and Eric Suda

3.1 Introduction 55
3.2 Centrifugation 59
3.3 Microfiltration 62
3.4 Depth Filtration 67
3.5 Flocculation 70
3.6 Absolute Filtration 71
3.7 Expanded Bed Adsorption Chromatography 73
3.8 Harvesting in Single-Use Manufacturing 74
3.9 Comparison of Harvest and Clarification Unit Operations 74
References 76

4 Next-Generation Clarification Technologies for the Downstream
Processing of Antibodies 81
Nripen Singh and Srinivas Chollangi

4.1 Introduction 81
4.2 Impurity Profiles in Cell Cultures 83
4.3 Precipitation 84
4.3.1 Acid Precipitation 84
4.3.2 Caprylic Acid Precipitation 87
4.3.3 PEG Precipitation 88
4.3.4 Cold Ethanol Precipitation 89
4.4 Affinity Precipitation 89
4.5 Flocculation 90
4.5.1 Anionic Flocculation 91
4.5.2 Cationic Flocculation 92
4.5.3 Multimodal Flocculation 95
4.6 Toxicity of Flocculants and Precipitants and Their Residual Clearance 96
4.7 Depth Filtration 97
4.7.1 Improvements in Depth Filtration Technology 97
4.7.2 Impurity Removal by Depth Filtration 98
4.7.3 Virus Clearance by Depth Filtration 99
4.8 Considerations for the Implementation of New
Clarification Technologies 102
4.9 Conclusions and Future Perspectives 103
Acknowledgments 104
References 104
5 Protein A-Based Affinity Chromatography
 Suresh Vunnum, Ganesh Vedantham and Brian Hubbard

5.1 Introduction
5.2 Properties of Protein A and Commercially Available Protein A Resins
 5.2.1 Protein A Structure
 5.2.2 Protein A–Immunoglobulin G Interaction
 5.2.3 Stoichiometry of Protein A–IgG Binding
 5.2.4 Protein A Stability
 5.2.5 Commercial Protein A Resins
 5.2.6 Static Capacity
 5.2.7 Dynamic Binding Capacity
 5.2.8 Leaching
 5.2.9 Production Rates
5.3 Protein A Chromatography Step Development
 5.3.1 Loading/Binding
 5.3.2 Wash Development
 5.3.3 Elution
 5.3.4 Stripping
 5.3.5 Regeneration and CIP
5.4 Additional Considerations During Development and Scale-Up
 5.4.1 Controlling HMW Aggregate Formation
 5.4.2 Removal of Soluble HMW Contaminants
 5.4.3 Turbidity
5.5 Virus Removal/Inactivation
 5.5.1 Virus Removal
 5.5.2 Low-pH Inactivation
 5.5.3 Prion Clearance
5.6 Validation and Robustness
 5.6.1 Validation
 5.6.2 Robustness
5.7 Conclusions
 Acknowledgement
 References

6 Purification of Human Monoclonal Antibodies:
 Non-Protein A Strategies
 Alahari Arunakumari and Jue Wang

6.1 Introduction
6.2 Integrated Process Design for Human Monoclonal Antibody Production
6.3 Purification Process Designs for HuMabs
 6.3.1 Protein A Purification Schemes
 6.3.2 Non-Protein A Purification Schemes
 6.3.3 Host Cell Protein Exclusion Approach for IEX Purification Schemes
 6.3.3.1 Primary Recovery
 6.3.3.2 Optimization of CEX Capture Chromatography
 6.3.3.3 Two-Column Nonaffinity Purification Processes
CONTENTS

6.4 Conclusions 149
Acknowledgments 151
References 152

7 Hydrophobic Interaction Chromatography for the Purification of Antibodies 155
Judith Vajda and Egbert Müller

7.1 Introduction 155
7.2 HIC With mAbs 156
 7.2.1 Stationary Phases 157
 7.2.2 Dynamic Binding Capacities 159
 7.2.2.1 Salts and Electrolytes 159
 7.2.2.2 Buffer pH 162
 7.2.2.3 Dual Salt Mixtures 162
 7.2.2.4 Resin Screening 162
 7.2.3 Selectivity and Impurity Removal 163
 7.2.4 Antibody Capturing 163
 7.2.5 Aggregate Removal 165
 7.2.6 mAb Fragments and Other Formats 172
 7.2.7 Antibody–Drug Conjugates 173
 7.2.8 Analytical HIC for mAbs 173
7.3 HIC with Membrane Adsorbers 173
7.4 Future Perspectives 174
References 175

8 Purification of Monoclonal Antibodies by Mixed-Mode Chromatography 181
Pete Gagnon

8.1 Introduction 181
8.2 A Brief History 182
8.3 Prerequisites for Industrial Implementation 183
8.4 Mechanisms, Screening, and Method Development 185
8.5 Capture Applications 192
8.6 Polishing Applications 193
8.7 Sequential Capture/Polishing Applications 193
8.8 Future Prospects 193
 Acknowledgments 194
 References 194

9 Advances in Technology and Process Development for Industrial-Scale Monoclonal Antibody Purification 199
Nuno Fontes and Robert Van Reis

9.1 Introduction 199
9.2 Affinity Purification Platform 200
 9.2.1 Overview 200
 9.2.2 Standard Purification Sequence 200
 9.2.3 Challenges and Opportunities 200
9.3 Advances in the Purification of mAbs by CEX Chromatography 201
 9.3.1 Overview 201
 9.3.2 High-Capacity CEX 202
 9.3.3 An Exclusion Mechanism in IEX Chromatography 203
 9.3.4 Factors Affecting the Critical Conductivity 205
 9.3.5 Advances in mAb CEX Process Development 206
9.4 High-Performance Tangential Flow Filtration 209
 9.4.1 Overview 209
 9.4.2 Advances in HPTFF 210
9.5 A New Nonaffinity Platform 211
 References 213

10 Alternatives to Packed-Bed Chromatography for Antibody
 Extraction and Purification 215
 Jörg Thömmes, Richard M. Twyman and Uwe Gottschalk

 10.1 Introduction 215
 10.2 Increasing the Selectivity of Harvest Procedures:
 Flocculation and Filter Aids 216
 10.2.1 Flocculation 216
 10.2.2 Filter Aids 217
 10.3 Solutions for Antibody Extraction, Concentration, and Purification 218
 10.3.1 Extraction and Concentration by Precipitation 218
 10.3.2 Extraction and Concentration by Liquid-Phase Partitioning 219
 10.3.3 Concentration by Evaporation 220
 10.4 Antibody Purification and Formulation Without Chromatography 220
 10.4.1 Crystallization 220
 10.4.2 Controlled Freeze–Thaw 222
 10.4.3 Lyophilization 222
 10.5 Membrane Adsorbers 223
 10.6 Conclusions 225
 References 226

11 Process-Scale Precipitation of Impurities in Mammalian
 Cell Culture Broth 233
 Judy Glynn

 11.1 Introduction 233
 11.2 Precipitation of DNA and Protein—Other Applications 235
 11.3 A Comprehensive Evaluation of Precipitants
 for the Removal of Impurities 236
 11.3.1 Protocol 236
 11.3.2 Ammonium Sulfate Precipitation 237
 11.3.3 Polymer Precipitation 237
 11.3.4 Precipitation with Ionic Liquids 238
 11.3.5 Precipitation with Cationic Detergents 239
 11.3.6 Ethacridine Precipitation 239
 11.3.7 Caprylic Acid Precipitation 240
12 Charged Ultrafiltration and Microfiltration Membranes for Antibody Purification

Mark R. Etzel and Abhiram Arunkumar

12.1 Introduction 247
12.2 Charged UF Membranes 248
12.3 Concentration Polarization and Permeate Flux 248
12.4 Stagnant Film Model 249
12.5 Sieving Coefficient 250
12.6 Mass Transfer Coefficient 251
12.7 Mass Balance Models 251
12.8 Scale-Up Strategies and the Constant Wall Concentration (C_w) Approach 253
12.9 Membrane Cascades 255
12.10 Protein Fractionation Using Charged UF Membranes 256
12.11 Case Study 257
 12.11.1 Methods 257
 12.11.2 Results 257
 12.11.3 Discussion 259
12.12 Charged MF Membranes 259
12.13 Virus Clearance 260
12.14 Salt Tolerance 261
12.15 Conclusions 264
 Acknowledgments 264
 References 264

13 Disposable Prepacked-Bed Chromatography for Downstream Purification: Form, Fit, Function, and Industry Adoption

Stephen K. Tingley

13.1 Introduction 269
13.2 Development-Scale Prepacked Column Applications 271
 13.2.1 Resin and Condition Scouting 271
 13.2.2 Process Development 271
 13.2.3 Process Optimization and Troubleshooting 273
 13.2.4 Virus Titer Reduction Validation 273
13.3 Process-Scale Prepacked Column Applications 275
 13.3.1 Overview 275
 13.3.2 Prepacked Columns—Form 275
 13.3.3 Prepacked Columns—Design Considerations 277
 13.3.4 Prepacked Columns—Function 277
13.4 Basic Technical Datasets 278
 13.4.1 Scale-Up and Basic Chromatography 278
 13.4.2 Column Cycling 278
 13.4.3 Column Cleanability 280
 13.4.4 Shelf Life 281
 13.4.5 Extractables and Leachables 282
 13.4.6 Shipping and Handling 283
13.5 Independent Industry Assessments of “Fit for Purpose” 285
13.6 Case Study 1: Cation-Exchange Polishing Chromatography 285
13.7 Case Study 2: Prepacked Columns for Pilot-/Large-Scale Bioprocessing 287
13.8 Prepacked Columns—Fit 292
 13.8.1 Manufacturing Operations for Toxic Products 292
 13.8.2 Single-Use/Disposable Facilities 292
 13.8.3 Clinical Manufacturing Operations 293
 13.8.4 Contract Manufacturing 293
 13.8.5 Distributed Commercial Manufacturing 294
13.9 The Economics of Prepacked Column Technologies 295
13.10 The Implementation of Disposable Prepacked Columns 297
 13.10.1 Cross-Functional Alignment 297
 13.10.2 Project and Process Fit 297
 13.10.3 Risk Analysis and Risk Mitigation 297
 13.10.4 Enabling Future Processes 298
 13.10.5 Technological Pros and Cons 299
13.11 Conclusions 300
References 301

14 Integrated Polishing Steps for Monoclonal Antibody Purification 303
 Sanchayita Ghose, Mi Jin, Jia Liu, John Hickey and Steven Lee

14.1 Introduction 303
14.2 Polishing Steps for Antibody Purification 304
 14.2.1 Ion-Exchange Chromatography 304
 14.2.1.1 AEX Chromatography 304
 14.2.1.2 CEX Chromatography 305
 14.2.2 Hydrophobic Interaction Chromatography 308
 14.2.3 HA Chromatography 312
 14.2.4 Mixed-Mode and Other Modes of Chromatography 313
 14.2.5 Dedicated Virus Removal Steps 316
14.3 Integration of Polishing Steps 316
 14.3.1 Case Study I: Selection and Placement of Polishing Steps 316
 14.3.2 Case Study II: Selecting an Operational Mode and the Influence of the Upstream Polishing Step 318
14.4 Conclusions 320
Acknowledgment 320
References 320
15 Orthogonal Virus Clearance Applications in Monoclonal Antibody Production 325

Joe X. Zhou

15.1 Introduction 325
15.2 Model Viruses and Virus Assays 326
15.3 Virus Clearance Strategies at Different Development Stages 328
15.4 Orthogonal Virus Clearance During mAb Production 328
 15.4.1 Capture, Low-pH Virus Inactivation, and Polishing 328
 15.4.2 Disposable Systems 329
 15.4.2.1 Depth Filtration 329
 15.4.2.2 Q Membrane Chromatography 330
 15.4.2.3 Virus Clearance Using 20-nm Filters 333
15.5 Conclusions and Future Perspectives 338
Acknowledgments 339
References 339

16 Development of a Platform Process for the Purification of Therapeutic Monoclonal Antibodies 343

Yuling Li, Min Zhu, Haibin Luo and Justin R. Weaver

16.1 Introduction 343
16.2 Chromatography Steps in the Platform Process 345
 16.2.1 Capture Step: General Considerations 345
 16.2.1.1 Protein A Affinity Chromatography 346
 16.2.1.2 CEX Chromatography 347
 16.2.1.3 Mixed-Mode Chromatography 347
 16.2.1.4 Overview of Capture Resin Platforms 348
 16.2.2 Intermediate/Polishing Steps 348
 16.2.2.1 CEX Chromatography 348
 16.2.2.2 AEX Chromatography 349
 16.2.2.3 Mixed-Mode and HIC 349
 16.2.2.4 Selection of Polishing Resins 351
16.3 Virus Inactivation 352
16.4 UF/DF Platform Considerations 352
 16.4.1 Optimization 353
 16.4.2 Challenges and Facility Fit 354
 16.4.3 Application Examples 354
16.5 Platform Development: Virus Filtration and Bulk Fill 354
 16.5.1 Virus Filtration in Platform Processes 355
 16.5.2 Filtration in Platform Processes 355
16.6 Addressing Future Challenges in Downstream Processing 356
16.7 Representative Platform Processes 356
 16.7.1 Example 1: Three-Column Process Including Protein A 356
 16.7.2 Example 2: Three-Column Process Without Protein A 358
 16.7.3 Example 3: Streamlined Processes with One or Two Columns 359
16.8 Developing a Virus Clearance Database Using a Platform Process 359
16.9 Summary 361
References 361
17 The Evolution of Platform Technologies for the Downstream Processing of Antibodies

Lee Allen

17.1 Introduction
17.2 The Definition of a Platform Purification Process
17.3 The Dominant Process Design
 17.3.1 Convergence on a Dominant Design
 17.3.2 Evolutionary Pressure on Purification Platforms
17.4 The Evolution of Unit Operations
 17.4.1 Incremental Improvements in Capture Technology
 17.4.1.1 The Development of Protein A Affinity Chromatography
 17.4.1.2 Incremental Improvements in Protein A Affinity Chromatography
 17.4.2 Incremental Improvements in Polishing Technology
 17.4.2.1 AEX Chromatography
 17.4.2.2 Aggregate Reduction Steps
 17.4.3 Incremental Improvements in Virus Clearance
 17.4.3.1 Virus Inactivation
 17.4.3.2 Virus Removal by Filtration
17.5 Adapting the Platform Process for Product-Specific Issues
17.6 Future Perspectives—Future Evolutionary Pathways
17.7 Concluding Remarks
Acknowledgments
References

18 Countercurrent Chromatography for the Purification of Monoclonal Antibodies, Bispecific Antibodies, and Antibody–Drug Conjugates

Thomas Müller-Späth and Massimo Morbidelli

18.1 Introduction
18.2 Chromatography to Reduce Product Heterogeneity
18.3 Definition of Performance Parameters
18.4 Gradient Chromatography for Biomolecules
18.5 Continuous and Countercurrent Chromatography
 18.5.1 Overview
 18.5.2 The Simulated Moving Bed Process
 18.5.3 Advantages and Disadvantages ofBatch and SMB Chromatography
18.6 Multicolumn Countercurrent Solvent Gradient Purification
 18.6.1 MCGSP Process Principle and Design
 18.6.2 MCGSP for the Capture of Antibodies from Clarified Cell Culture Supernatants
 18.6.3 MCGSP for the Separation of mAb Variants
 18.6.4 MCGSP for the Purification of bsAbs
 18.6.5 MCGSP for the Purification of ADCs
18.7 Scalability of Multicolumn Countercurrent Chromatography
18.8 Online Process Monitoring for Multicolumn Countercurrent Chromatography 404
18.9 Outlook 405
References 405

19 The Evolution of Continuous Chromatography: From Bulk Chemicals to Biopharma 409
Marc Bisschops
19.1 Introduction 409
19.2 Continuous Chromatography in Traditional Process Industries 410
19.2.1 Continuous IEX 410
19.2.2 SMB Technology 411
19.3 Continuous Chromatography in the Biopharmaceutical Industry 413
19.3.1 Continuous Multicolumn Chromatography Systems 414
19.3.2 Continuous Multicolumn Capture Chromatography 417
19.3.3 Number of Columns 418
19.3.4 Beyond Affinity Capture Chromatography 420
19.4 Advantages of Continuous Chromatography 420
19.5 Implementation Aspects of Continuous Chromatography 422
19.5.1 Single‐Use Bioprocessing 422
19.5.2 Integrated Continuous Bioprocessing 422
19.6 Regulatory Aspects 424
19.7 Conclusions 426
References 427

20 Accelerated Seamless Antibody Purification: Simplicity is Key 431
Benoit Mothes
20.1 Introduction 431
20.2 Accelerated Seamless Antibody Purification 432
20.2.1 Concept of the ASAP Process 432
20.2.2 ASAP Process Development 433
20.2.2.1 Buffer Solutions 433
20.2.2.2 The Protein A Step 434
20.2.2.3 The Mixed-Mode Step 434
20.2.2.4 The AEX Step 436
20.2.2.5 Summary of ASAP Process Performance 436
20.2.2.6 ASAP Process Robustness 436
20.3 Advantages of the ASAP Process 437
20.4 Scaling Up the ASAP Process 438
20.4.1 Laboratory Scale-Up 438
20.4.2 Pilot-Scale ASAP in a cGMP Environment 440
20.5 New Perspectives 440
20.5.1 Purification Skid 440
20.5.2 Process Analytical Technology 441
20.5.3 Membrane Adsorbers 441
21 Process Economic Drivers in Industrial Monoclonal Antibody Manufacture

Suzanne S. Farid

21.1 Introduction 445
21.2 Challenges When Striving for the Cost-Effective Manufacture of mAbs 446
 21.2.1 Constraints 446
 21.2.2 Uncertainties 447
21.3 Cost Definitions and Benchmark Values 448
 21.3.1 Capital Investment 448
 21.3.2 Cost of Goods per Gram 449
21.4 Economies of Scale 450
21.5 Overall Process Economic Drivers 453
 21.5.1 Titer 453
 21.5.2 Overall DSP Yield 454
 21.5.3 Batch Duration 455
 21.5.4 Batch Success Rate 455
 21.5.5 Logistics 456
21.6 DSP Drivers At High Titers 457
 21.6.1 Material Reuse and Lifetime 458
 21.6.2 Buffer/WFI Demands 458
 21.6.3 Chromatography Capacity 459
21.7 Process Economic Trade-Offs for Downstream Process Bottlenecks 459
 21.7.1 Chromatography Resin Dynamic Binding Capacity 460
 21.7.2 Chromatography Flow Rates 460
 21.7.3 Chromatography Resin Cycle Limits 460
 21.7.4 Platform Processes 460
 21.7.5 Alternatives to Chromatography 461
21.8 Summary and Outlook 461
 References 462

22 Design and Optimization of Manufacturing

Andrew Sinclair

22.1 Introduction 467
22.2 Process Design and Optimization 468
22.3 Modeling Approaches 470
 22.3.1 Process Models for mAb Manufacturing:
 Understanding Economics 470
 22.3.1.1 Basic Accounting Principles 471
 22.3.1.2 Project Appraisal 472
 22.3.1.3 Cost of Goods Modeling 473
22.3.2 Process Schedule Visualization for mAb Manufacturing
- 22.3.2.1 Process/Facility Schedule
- 22.3.2.2 Data Requirements
- 22.3.2.3 Bioprocess Models in Relation to ANSI/ISA-88

22.4 Process Modeling in Practice
- 22.4.1 Manufacturing Strategies
 - 22.4.1.1 Pooling Strategies for Multiple Single-Use Bioreactors
 - 22.4.1.2 Measuring the Overall Impact of Novel Single-Use Platforms
- 22.4.2 The Potential of Continuous Downstream Processing Operations
- 22.4.3 Manufacturing Technologies—Single-Use Systems
 - 22.4.3.1 Impact on Product and Solution Handling
 - 22.4.3.2 Membrane Adsorbers

22.5 Impact of the Process on the Facility
- 22.5.1 The Management of Multiproduct Manufacturing

Acknowledgments

References

23 Smart Design for an Efficient Facility With a Validated Disposable System

Joe X. Zhou, Jason Li, Michael Cui and Haojun Chen

- 23.1 Design and Optimization of a Manufacturing Facility
 - 23.1.1 Introduction
 - 23.1.2 Considerations for the Design and Construction of a New Facility
 - 23.1.3 Adapting to a New mAb Production Platform
 - 23.1.4 Process Modeling
 - 23.1.5 New Facility Project Management
 - 23.1.6 Site Selection and Master Planning
- 23.2 Validation of a Disposable System
 - 23.2.1 Introduction
 - 23.2.2 Regulatory Requirements for Process Validation
 - 23.2.3 General Considerations for the Validation of Disposable Systems
 - 23.2.4 Implementation of Disposable Systems Validation
- 23.3 Conclusion

Acknowledgments

References

24 High-Throughput Screening and Modeling Technologies for Process Development in Antibody Purification

Tobias Hahn, Thiemo Huuk and Jürgen Hubbuch

- 24.1 Introduction
- 24.2 Adsorption Isotherms
24.2.1 Example 1: Langmuir Isotherm 516
24.2.2 Example 2: Steric Mass Action Isotherm 517
24.2.3 Adsorption Kinetics 518

24.3 Batch Chromatography 519
24.3.1 Design Space Exploration 521
24.3.2 Mechanistic Data Analysis 524

24.4 Column Chromatography 524
24.4.1 Comparability of HTCC and Benchtop Systems 525
24.4.2 Mechanistic Modeling 526
24.4.2.1 Solution of the Model Equation 527
24.4.2.2 Model Calibration 527
24.4.2.3 Example: Modeling a mAb Polishing Step 529

References 532

25 Downstream Processing of Monoclonal Antibody Fragments 537
Mariangela Spitali

25.1 Introduction 537
25.2 Production of Antibody Fragments for Therapeutic Use 538
25.3 Downstream Processing 539
25.3.1 Primary Recovery 539
25.3.2 Capture 542
25.3.3 Expanded Bed Adsorption Chromatography 548
25.3.4 Further Purification and Polishing 550
25.3.4.1 Intermediate Purification 550
25.3.4.2 Polishing 551
25.4 Improving the Pharmacological Characteristics of Antibody Fragments 552
25.5 Conclusions 553
Acknowledgments 555
References 555

26 Downstream Processing of Fc Fusion Proteins, Bispecific Antibodies, and Antibody–Drug Conjugates 559
Abhinav A. Shukla and Carnley L. Norman

26.1 Introduction 559
26.1.1 Fragment Crystallizable Fusion Proteins 559
26.1.2 Bispecific Antibodies 561
26.1.3 Antibody–Drug Conjugates 562
26.2 Biochemical Properties 562
26.2.1 Fc Fusion Proteins 562
26.2.2 Bispecific Antibodies 569
26.2.2.1 IgG-Like bsAbs 569
26.2.2.2 bsAb Fragments 572
26.2.3 Antibody–Drug Conjugates 572
26.3 Purification From Mammalian Expression Systems 576
26.3.1 Platform Approaches for Downstream Purification 576
26.3.2 Fc Fusion Proteins: Capture, Virus Inactivation, and Polishing 578
26.3.3 bsAbs: Molecule Design and Purification 581
26.3.4 ADCs: Additional Steps 582
 26.3.4.1 Lysine Conjugation 584
 26.3.4.2 Cysteine Conjugation 584
 26.3.4.3 Manufacturing Challenges 585
26.4 Purification From Microbial Production Systems 585
26.5 Future Innovations 587
Acknowledgment 589
References 589

27 Manufacturing Concepts for Antibody–Drug Conjugates 595
Thomas Rohrer

27.1 Introduction 595
27.2 Targeting Components 596
 27.2.1 Targeting Components for Random Conjugation 596
 27.2.2 Targeting Components for Site-Specific Conjugation 598
27.3 Cytotoxic Drugs 600
27.4 Chemically Labile Linkers 602
27.5 General Process Overview 604
27.6 Facility Design and Supporting Technology 604
27.7 Single-Use Equipment 607
27.8 Manufacturing ADCs 608
27.9 Analytical Support for ADC Manufacturing 609
 27.9.1 Drug-to-Antibody Ratio and Distribution 609
 27.9.2 Size-Variant Analysis 610
 27.9.3 Unconjugated Drug in the Drug Substance and Product 611
27.10 Raw Materials Supply Chain 611
27.11 Conclusion 611
Acknowledgments 613
References 613

28 Purification of IgM and IgA 615
Charlotte Cabanne and Xavier Santarelli

28.1 Introduction 615
28.2 Purification of IgM 616
 28.2.1 IgM Structure and Properties 616
 28.2.2 IgM Purification Technologies 616
 28.2.3 Affinity and Pseudoaffinity Matrices 617
 28.2.3.1 Protein L 617
 28.2.3.2 Mannose-Binding Protein 617
 28.2.3.3 Thiophilic Matrices 618
 28.2.3.4 Immobilized Metal Affinity Chromatography 618
 28.2.3.5 Hydroxyapatite 619
 28.2.3.6 Protein A Mimetic TG 19318 619
28.2.3.7 VHH Camelid Ligand 619
28.2.3.8 Hexamer Peptide Ligands HWRGWV, HYFKFD, and HFRRHL 620
28.2.3.9 Capto™ Core 700 620
28.3 Purification of IgA 621
28.3.1 IgA Structure and Properties 621
28.3.2 Affinity and Pseudoaffinity Matrices 621
28.3.2.1 Protein L, Thiophilic Matrices, and IMAC 621
28.3.2.2 Hydroxyapatite 621
28.3.2.3 Jacalin Matrix 622
28.3.2.4 Protein A Mimetic TG 19318 622
28.3.2.5 Streptococcal IgA-Binding Peptide 622
28.3.2.6 ZIgA Ligand 622
28.3.2.7 Hexameric Peptide Ligand HWRGWV 622
28.3.2.8 VHH Camelid Ligand 622
28.4 Conclusion 623
Acknowledgments 623
References 623

29 Purification of Monoclonal Antibodies From Plants 631
Zivko L. Nikolov, Jeffrey T. Regan, Lynn F. Dickey and Susan L. Woodard

29.1 Introduction 631
29.2 Antibody Production in Plants 632
29.2.1 Subcellular Localization and Glycosylation 632
29.2.2 Other Factors Affecting mAb Accumulation 635
29.3 Downstream Processing of Antibodies Produced in Plants 636
29.3.1 Tissue Disintegration 638
29.3.2 Solids Separation and Clarification 639
29.3.3 Pretreatment of Clarified Extracts 640
29.4 Purification of Plant-Derived Antibodies Using Protein A Resins 641
29.5 Purification of Plant-Derived Antibodies Using Non-Protein A Media 642
29.6 Polishing Steps 643
29.7 Conclusions 645
Acknowledgment 645
References 645

30 Very-Large-Scale Production of Monoclonal Antibodies in Plants 655
Johannes F. Buyel, Richard M. Twyman and Rainer Fischer

30.1 Introduction 655
30.2 Process Schemes for mAb Production in Plants 656
30.2.1 Extraction 657
30.2.2 Clarification 658
30.2.3 Purification 659
30.3 Scalable Process Models 661
31 Trends in Formulation and Drug Delivery for Antibodies

Hanns-Christian Mahler and Roman Mathäs

31.1 Introduction

31.2 Degradation Pathways

31.3 Physical Instability

31.3.1 Denaturation

31.3.2 Aggregation/Precipitation

31.3.3 Adsorption

31.4 Chemical Instability

31.4.1 Deamidation

31.4.2 Asp Isomerization

31.4.3 Oxidation

31.4.4 Hydrolysis

31.4.5 Glycation

31.4.6 Disulfide and Nondisulfide Cross-linking

31.5 How to Achieve Product Stability

31.6 Developability: Molecule Selection and Elimination of Degradation Hotspots

31.7 Stabilizing an Antibody in a Liquid Formulation

31.8 Stabilizing an Antibody by Drying

31.9 Choice of Adequate Primary Packaging

31.10 Minimizing Stress During Drug Product Processing

31.10.1 Freeze/Thaw

31.10.2 Mixing

31.10.3 Filling

31.10.4 Filtration

31.10.5 Shipping

31.10.6 Environmental Impact

31.11 Implementation of a Formulation Strategy

31.12 Hot Topics

31.12.1 Protein Aggregation and Protein Particles

31.12.2 High-Concentration Antibody Formulations for Subcutaneous Administration

31.12.3 Drug/Device Combination Products

31.12.4 When Stabilizers Need a Stabilizer

31.12.5 Protein Oxidation

31.12.6 The Bioprocess May Affect Drug Product Stability

31.13 Summary

References
32 Antibody Purification: Drivers of Change 699
Narahari Pujar, Duncan Low and Rhona O’Leary

32.1 Introduction 699
32.2 The Changing Regulatory Environment—Pharmaceutical Manufacturing for the 21st Century 701
 32.2.1 Using Design Space to Enable Change 704
 32.2.2 High-Throughput and Microscale Approaches to Process Development and Characterization 706
32.3 Technology Drivers—Advances and Innovations 707
 32.3.1 Process Analytical Technology 707
 32.3.2 Process Control Technology 708
32.4 Economic Drivers 708
 32.4.1 Cost of Goods 708
 32.4.2 Single-Use Disposable Components 709
 32.4.3 Globalization 710
 32.4.4 FOBs or Biosimilars 711
32.5 Conclusions 711

Acknowledgment 712
References 713

INDEX 717
The first edition of this book was published when monoclonal antibodies had established themselves as a powerful force in medicine and already dominated mammalian cell culture processes. Antibodies have always offered a collective bargaining power brought about by their consistent properties, but their vast potential has grown as more successful second- and third-generation products have been launched, and with hundreds of candidates in preclinical and clinical development the need for state-of-the-art manufacturing technology is greater than ever before. Monoclonal antibodies have maintained and even consolidated their position as market leaders, and this will be sustained by waves of engineered antibody-related molecules that promise to fill the market for years to come.

I first came into contact with this field in 1986, when monoclonal antibody production was in its infancy, and a milligram of antibodies was worth far more than its weight in gold. At that time, my colleagues and I had visions of curing cancer by drug targeting, and we linked all sorts of cytotoxic agents to the antibodies we produced. Some of the expectations surrounding the medical use of antibodies turned out to be premature and unrealistic. Our awareness coincided with the first real downturn in the biotechnology sector, but antibodies survived in niche markets for diagnostics and research reagents. Years later, this market segment was reborn and monoclonal antibodies are now stronger than ever. Indeed, they are the fastest-growing class of biotherapeutics with nearly 50 products on the US market in 2016 and well-filled development pipelines [1].

Most commercial antibodies are still produced in cultured mammalian cells, and an entire subindustry has evolved around upstream production and downstream processing to ensure that manufacturing processes generate safe and efficacious products suitable for administration to humans. At the end of the 1980s, antibodies were produced commercially by cultivating mammalian cells in perfusion fermenters, but the yields rarely exceeded 100 mg/L. Huge volumes of culture broth needed to be processed to achieve even these yields, and the easiest way to bring the volume down was polyethylene glycol (PEG) precipitation with tons of material and endless centrifugation cycles. The yields
were poor and difficult to reproduce, but there were no alternatives. Since then, the productivity of cell cultures has increased significantly, with 5 g/L titers now routine and the real prospect of 10–20 g/L yields in the next decade. This increase in titers has heaped pressure on the downstream processes that we use to extract and purify antibodies from cell culture broth, and the technologies used in downstream processing have been forced to modernize and improve in the face of this increasing challenge.

When the first edition of this book was published, downstream processing meant packed-bed chromatography, a workhorse that had served the industry well since the first proteins were manufactured [2]. But even at that time, there were rumblings of doubt, with some even predicting that traditional chromatography was facing a terminal decline [3]. Unlike fermentation, chromatography steps in downstream processing do not benefit from an economy of scale. The bind-and-elute cycles in chromatography are driven by mass rather than by volume, and this means that increasing batch sizes translate directly and almost linearly into increasing costs. This phenomenon particularly affects the first column, which captures the product. This initial recovery step was therefore identified as the most serious potential bottleneck, with knock-on effects throughout the processing facility in terms of column sizes, buffer preparation areas, and hold tanks. Others predicted that packed-bed chromatography would survive and even flourish [4, 5]. This has indeed proven to be the case [6]. The revolution never happened, chromatography was never abandoned, and chromatography today has much the same central role in antibody manufacturing as it did a decade ago.

However, the industry has undergone and is still undergoing massive redevelopment. The exciting atmosphere of incipient change that inspired the first book has not abated, although the focus has moved. There are many new challenges that were distant or unheard of 10 years ago, including novel and more potent antibody formats, new treatment indications, the advent of personalized medicine, the drive toward distributed manufacturing, the increasing importance of flexibility, and finally the success of biosimilars, which will change the entire biopharmaceuticals market beyond recognition. In reaction to these developments, the market is becoming increasingly fragmented and decentralized, with the focus shifting from in-house production to outsourcing, and from dedicated single-product facilities to multiproduct contract manufacturers using disposable processing solutions.

This second edition, therefore, follows in the footsteps of the original, but has expanded to embrace diverse new technologies and products, and the trend toward making modern production facilities more adaptable and flexible (helped in no small way by the increasingly supportive initiatives of the regulatory agencies). Chapter 1 brings us right up to date with current practices in monoclonal antibody purification and makes the case for future developments in this area. This is complemented by Chapter 2, which provides an informative historical overview of the development of antibody purification technologies. Chapters 3–6 address historical and contemporary practices in antibody purification, beginning with harvest and recovery, capture by Protein A chromatography, and a summary of non-Protein A methods. Chapters 7 and 8 address hydrophobic interaction chromatography and mixed-mode chromatography as specific capture methods.

Chapter 9 begins with a summary of process development strategies before considering nonchromatography methods and their application in monoclonal antibody purification processes (Chapter 10), focusing on process-scale precipitation (Chapter 11) and the use of charged membranes (Chapter 12). Chapters 13 and 14 consider disposable packed-bed chromatography solutions and integrated polishing steps for antibody
purification. The focus then shifts to orthogonal methods for virus removal (Chapter 15), before we consider platform technologies that are used to integrate virus clearance with capture and purification (Chapter 16), and the evolution of platform technologies for antibody purification (Chapter 17). We then discuss the use of continuous chromatography for the high-resolution separation of antibodies (Chapters 18 and 19), and the development of accelerated seamless antibody purification (Chapter 20) as an industrial process.

Chapters 21–23 look at the economic perspectives of antibody manufacture, one from the standpoint of process economics, the next from the standpoint of process design and optimization, and finally from the perspective of designing an efficient facility using smart design principles. In Chapter 24, we consider process development by high-throughput screening and modeling, and the unique aspects of process development for antibody fragments (Chapter 25) and other derivatives (Chapter 26), including antibody–drug conjugates (Chapter 27) and IgM/IgA products (Chapter 28). We also consider the emerging field of antibody production in plants (Chapter 29), including the potential application of plants for very-large-scale antibody manufacturing (Chapter 30).

Chapter 31 considers the last stages of antibody manufacturing, namely formulation and filling. Finally, the book is wrapped up with Chapter 32, which looks to the future by considering what drives change in the industry, particularly factors that are likely to influence the techniques and technologies that will be adopted for antibody purification in the decades to come.

The second edition of the book shows that the future remains promising for antibody manufacturing and that the industry still relies on innovation to make progress and adapt to the shifting market environment. Neither the original edition of the book nor the much expanded second edition would have been possible without the many academic and industry colleagues who have contributed their expertise, opinions, and above all their passion for the improvement of antibody manufacturing, leading to technological advances and innovations that will help break through the current ceiling in antibody processing and provide less-expensive and higher quality biopharmaceutical products long into the future.

UWE GOTTSCHALK

REFERENCES

LIST OF CONTRIBUTORS

Lee Allen, Pharma/Biotech Research and Technology, Lonza AG, Slough, UK

Abhiram Arunkumar, Bristol-Myers Squibb, Devens, MA, USA

Alahari Arunakumari, AHA Bioconsultants LLC, Pennington, NJ, USA

Marc Bisschops, Pall Life Sciences, Medemblik, the Netherlands

Johannes F. Buyel, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany

Charlotte Cabanne, Bordeaux INP, CBMN, UMR 5248, Pessac, France

Haojun Chen, Sartorius China, Shanghai, P. R. China

Srinivas Chollangi, Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb, Devens, MA, USA

Michael Cui, Sartorius China, Shanghai, P. R. China

John Curling, John Curling Consulting AB, Uppsala, Sweden

Lynn F. Dickey, AgBiome LLC, Durham, NC, USA

Mark R. Etzel, University of Wisconsin, Madison, WI, USA

Suzanne S. Farid, Bioprocess Systems Engineering, The Advanced Centre for Biochemical Engineering and Department of Biochemical Engineering, University College London, London, UK

Rainer Fischer, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
LIST OF CONTRIBUTORS

Nuno Fontes, Process Science, Boehringer Ingelheim, Ingelheim am Rhein, Germany

Pete Gagnon, Validated Biosystems, Lake Forest, CA, USA

Sanchayita Ghose, Process Sciences—Downstream, Bristol-Myers Squibb, Co., East Syracuse, NY, USA

Judy Glynn, Pfizer, Inc., Chesterfield, MO, USA

Uwe Gottschalk, Pharma/Biotech, Lonza AG, Basel, Switzerland

Tobias Hahn, GoSilico GmbH, Karlsruhe, Germany

Jürgen Hubbuch, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Thiemo Huuk, GoSilico GmbH, Karlsruhe, Germany

Mi Jin, Process Sciences—Downstream, Bristol-Myers Squibb, Co., East Syracuse, NY, USA

Brian Kelley, Bioprocess Development, Genentech, Inc., South San Francisco, CA, USA

Steven Lee, Bristol-Myers Squibb, Co., East Syracuse, NY, USA

Jason Li, Genor BioPharma, Inc. Walvax Group, Inc., Shanghai, P. R. China

Yuling Li, Purification Process Sciences, MedImmune, Gaithersburg, MD, USA

Jia Liu, Process Sciences—Downstream, Bristol-Myers Squibb, Co., East Syracuse, NY, USA

Duncan Low, Process Development, Amgen, Thousand Oaks, CA, USA

Haibin Luo, Purification Process Sciences, MedImmune, Gaithersburg, MD, USA

Hanns-Christian Mahler, Lonza AG, Drug Product Services, Basel, Switzerland

Roman Mathäis, Lonza AG, Drug Product Services, Basel, Switzerland

Massimo Morbidelli, Institute for Chemical and Bioengineering, ETH Zürich, Zurich, Switzerland

Benoit Mothes, Sanofi, Paris, France

Egbert Müller, Tosoh Bioscience GmbH, Griesheim, Germany

Thomas Müller-Späth, Institute for Chemical and Bioengineering, ETH Zürich, Zurich, Switzerland

Zivko L. Nikolov, Biological and Agricultural Engineering, National Center for Therapeutics Manufacturing, Texas A&M University, College Station, TX, USA