Contents

Preface xiii

1 Introduction 1
Leon Lefferts, Ulf Hanefeld, and Harry Bitter
1.1 A Few Words at the Beginning 1
1.2 Catalysis in a Nutshell 1
1.3 History of Catalysis 3
1.3.1 Industrial Catalysis 4
1.3.2 Environmental Catalysis 5
1.4 Integration Homo–Hetero-Biocatalysis 5
1.5 Research in Catalysis 10
1.5.1 S-Curve, Old Processes Improvement Is Knowledge Intensive 10
1.5.2 Interdependence with Other Fields 11
1.5.3 Recent and Future Issues 12
1.5.3.1 Biomass 12
1.5.3.2 CO₂ as a Feedstock 13
1.6 Catalysis and Integrated Approach or How to Use this Book 14
References 14

2 Heterogeneous Catalysis 15
Leon Lefferts, Emiel Hensen, and Hans Niemantsverdriet
2.1 Introduction 15
2.1.1 Concept of Heterogeneous Catalysis 15
2.1.2 Applications of Heterogeneous Catalysis 16
2.1.2.1 Transportation Fuels 17
2.1.2.2 Chemicals 20
2.1.2.3 Environmental Pollution Control 21
2.1.3 Catalytic Cycle 23
2.2 Adsorption on Surfaces 23
2.2.1 Physisorption and Chemisorption 24
2.2.2 Adsorption Isotherms 26
2.2.3 Chemisorption and Chemical Bonding 28
2.2.4 Connecting Kinetic and Thermodynamic Formulations 33
2.3 Surface Reactions 35
2.3.1 Reaction Mechanism and Kinetics 35
2.4 Types of Heterogeneous Catalysts 41
2.4.1 Supported Metals 41
2.4.1.1 Understanding Trends in Reactivity 41
2.4.1.2 Structure Sensitivity 42
2.4.1.3 Support Effects 47
2.4.2 Oxides and Sulfides 51
2.4.2.1 Molecular Aspects 51
2.4.2.2 Processes 52
2.4.2.3 Transition Metal Sulfides 59
2.4.3 Solid Acid Catalysts 62

3 Homogeneous Catalysis 73

Elisabeth Bouwman, Martin C. Feiters, and Robertus J. M. Klein Gebbink

3.1 Framework and Outline 73
3.1.1 Outline of this Chapter 73
3.1.2 Definitions and Terminology 74
3.2 Coordination and Organometallic Chemistry 75
3.2.1 Coordination Chemistry: d Orbitals, Geometries, Crystal Field Theory 75
3.2.2 σ and π donors and back-donation: CO, alkene, phosphane, H₂ 77
3.2.3 Organometallics: Hapticity, Metal–Alkyl/Allyl, Agostic Interaction, Carbenes 80
3.2.4 Electron Counting: Ionogenic or Donor-Pair versus Covalent or Neutral-Ligand 81
3.2.5 Effect of Binding on Ligands and Metal Ions, Stabilization of Oxidation States 83
3.3 Elementary Steps in Homogeneous Catalysis 84
3.3.1 Formation of the Active Catalyst Species 84
3.3.2 Oxidative Addition and Reductive Elimination 85
3.3.2.1 Concerted Addition 85
3.3.2.2 Sₙ₂ Mechanism 86
3.3.2.3 Ionic Mechanism 86
3.3.2.4 Radical Mechanism 87
3.3.2.5 Reductive Elimination 87
3.3.3 Migration and Elimination 87
3.3.4 Oxidative Coupling and Reductive Cleavage 90
3.3.5 Alkene or Alkyne Metathesis and σ-Bond Metathesis 90
3.3.6 Nucleophilic and Electrophilic Attack 92
3.4 Homogeneous Hydrogenation 95
3.4.1 Background and Scope 95
3.4.2 H₂ Dihydride Mechanism: Wilkinson's Catalyst 96
3.4.3 H₂ Monohydride Mechanism and Heterolytic Cleavage 97
3.4.4 Asymmetric Homogeneous Hydrogenation 98
3.4.5 Transfer Hydrogenation with 2-Propanol 100
3.4.6 Other Alkene Addition Reactions 102
3.5 Hydroformylation 104
3.5.1 Scope and Importance of the Reaction and Its Products 104
3.5.2 Cobalt-Catalyzed Hydroformylation 105
3.5.3 Rhodium-Catalyzed Hydroformylation 107
3.5.4 Asymmetric Hydroformylation 110
3.6 Oligomerization and Polymerization of Alkenes 112
3.6.1 Scope and Importance of Oligomerization and Polymerization 112
3.6.2 Oligomerization of Ethene (Ni, Cr) 113
3.6.3 Stereochemistry and Mechanism of Propene Polymerization 115
3.6.4 Metallocene Catalysis 117
3.6.5 Polymerization with Non-Metallocenes (Pd, Ni, Fe, Co) 118
3.7 Miscellaneous Homogeneously Catalyzed Reactions 118
3.7.1 Cross-Coupling Reactions: Pd-Catalyzed C–C Bond Formation 118
3.7.2 Metathesis Reactions 120
Question 1 (total 20 points) 122
Question 2 (total 20 points) 122
References 123
Further Reading 124

4 Biocatalysis 127
Guzman Torrelo, Frank Hollmann, and Ulf Hanefeld
4.1 Introduction 127
4.2 Why Are Enzymes So Huge? 129
4.3 Classification of Enzymes 137
4.3.1 Oxidoreductases (EC 1) 139
4.3.1.1 Flavomonooxygenases 144
4.3.1.2 P450 Monooxygenases 144
4.3.1.3 Diiron-Dependent Monooxygenases 145
4.3.1.4 Peroxidases (EC 1.11.1) and Peroxygenases (EC 1.11.2) 146
4.3.2 Transferases (EC 2) 147
4.3.3 Hydrolases (EC 3) 147
4.3.4 Lyases (EC 4) 157
4.4 Concepts and Methods 157
4.4.1 Cofactor Regeneration Systems 158
4.4.2 Methods to Shift Unfavorable Equilibria 159
4.4.2.1 Kinetic versus Thermodynamic Control 159
4.4.2.2 Working in Organic Solvents 161
4.4.3 Two-Liquid-Phase Systems (and Related) 164
4.4.4 (Dynamic) Kinetic Resolutions and Desymmetrization 164
4.4.5 Enantiomeric Ratio E 168
4.5 Applications and Case Studies 169
4.5.1 Oxidoreductases (EC 1) 169
4.5.1.1 Dehydrogenases 169
4.5.1.2 Oxidases 173
4.5.1.3 Old Yellow Enzymes 174
4.5.1.4 Monooxygenases (EC 1.14.13) 175
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>Balance and Definitions</td>
<td>222</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Batch Reactor</td>
<td>224</td>
</tr>
<tr>
<td>6.2.2.1</td>
<td>Multiple Reactions</td>
<td>226</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Continuous Flow Stirred Tank Reactor (CSTR)</td>
<td>228</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Plug-Flow Reactor (PFR)</td>
<td>231</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Comparison between Plug-flow and CSTR Reactor</td>
<td>233</td>
</tr>
<tr>
<td>6.2.5.1</td>
<td>Reactor Size</td>
<td>233</td>
</tr>
<tr>
<td>6.2.5.2</td>
<td>Reactor Selectivity</td>
<td>235</td>
</tr>
<tr>
<td>6.3</td>
<td>Reaction and Mass Transport</td>
<td>236</td>
</tr>
<tr>
<td>6.3.1</td>
<td>External Mass Transfer</td>
<td>237</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Internal Mass Transport</td>
<td>242</td>
</tr>
<tr>
<td>6.3.2.1</td>
<td>Effectiveness Factor for Internal Mass Transfer</td>
<td>244</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Gas–Liquid Mass Transfer</td>
<td>248</td>
</tr>
<tr>
<td>6.3.3.1</td>
<td>Gas–Liquid Mass Transfer Followed by Reaction (Heterogeneously Catalyzed)</td>
<td>249</td>
</tr>
<tr>
<td>6.3.3.2</td>
<td>Gas–Liquid Mass Transfer Simultaneously with a Reaction (Homogeneously Catalyzed)</td>
<td>250</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Heat Transfer</td>
<td>254</td>
</tr>
<tr>
<td>6.3.4.1</td>
<td>External Heat Transfer</td>
<td>255</td>
</tr>
<tr>
<td>6.3.4.2</td>
<td>Internal Heat Transport</td>
<td>256</td>
</tr>
<tr>
<td>6.4</td>
<td>Criteria to Check for Transport Limitations</td>
<td>257</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Numerical Checks</td>
<td>257</td>
</tr>
<tr>
<td>6.4.1.1</td>
<td>External Mass Transfer; Carberry Number</td>
<td>257</td>
</tr>
<tr>
<td>6.4.1.2</td>
<td>Internal Mass Transfer; Wheeler–Weisz Modulus</td>
<td>257</td>
</tr>
<tr>
<td>6.4.1.3</td>
<td>External Heat Transfer</td>
<td>258</td>
</tr>
<tr>
<td>6.4.1.4</td>
<td>Internal Heat Transfer</td>
<td>258</td>
</tr>
<tr>
<td>6.4.1.5</td>
<td>Radial Profiles and Distributions in Concentration and Temperature</td>
<td>259</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Experimental Checks</td>
<td>260</td>
</tr>
<tr>
<td>6.4.2.1</td>
<td>Notation</td>
<td>264</td>
</tr>
<tr>
<td>6.4.2.2</td>
<td>Greek symbols</td>
<td>265</td>
</tr>
<tr>
<td>6.4.2.3</td>
<td>Subscripts</td>
<td>265</td>
</tr>
<tr>
<td>6.4.2.4</td>
<td>Question 1</td>
<td>265</td>
</tr>
<tr>
<td>6.4.2.5</td>
<td>Question 2</td>
<td>266</td>
</tr>
<tr>
<td>6.4.2.6</td>
<td>Question 3</td>
<td>267</td>
</tr>
<tr>
<td>6.4.2.7</td>
<td>References</td>
<td>269</td>
</tr>
</tbody>
</table>

7 Characterization of Catalysts 271

Guido Mul, Frank de Groot, Barbara Mojet-Mol, and Moniek Tromp

7.1 Introduction 271

7.1.1 Importance of Characterization of Catalysts 271

7.1.2 Overview of the Various Techniques 271

7.2 Techniques Based on Probe Molecules 273

7.2.1 Temperature-Programmed Techniques 273

7.2.2 Physisorption and Chemisorption 275

7.2.2.1 Physisorption 276

7.2.2.2 Chemisorption 279
7.3 Electron Microscopy Techniques 280
7.4 Techniques from Ultraviolet up to Infrared Radiation 283
7.4.1 UV/vis Spectroscopy 283
7.4.2 Infrared Spectroscopy 286
7.4.2.1 Probe Molecules 287
7.4.2.2 In Situ Experiments 287
7.4.2.3 Liquid-Phase Analysis 288
7.4.3 Raman Spectroscopy 289
7.5 Techniques Based on X-Rays 291
7.5.1 Introduction 291
7.5.2 Interaction of X-Rays with Matter 293
7.5.3 X-Ray Photoelectron Spectroscopy (XPS) 294
7.5.4 X-ray Absorption Spectroscopy (XAS) 295
7.5.4.1 XANES 295
7.5.4.2 EXAFS 298
7.5.5 X-Ray Scattering 299
7.5.5.1 WAXS/XRD 299
7.5.5.2 SAXS 300
7.5.6 X-Ray Microscopy 302
7.6 Ion Spectroscopies 303
7.7 Magnetic Resonance Spectroscopy Techniques 304
7.7.1 NMR 304
7.7.2 EPR 307
7.7.2.1 Metal-Centered Radicals 308
7.7.2.2 Ligand-Centered Radicals 308
7.8 Summary 310
 Question 1 310
 Question 2 311
 Question 3 312
 References 313

8 Synthesis of Solid Supports and Catalysts 315
 Petra de Jongh and Krijn de Jong
8.1 Introduction 315
8.2 Support Materials 317
8.2.1 Mesoporous Metal Oxides 318
8.2.1.1 Fumed Oxides 319
8.2.1.2 Silica Gel and Other Hydrothermally Prepared Oxides 320
8.2.1.3 Alumina 322
8.2.1.4 Ordered Mesoporous Materials 324
8.2.1.5 Extending the Ordered Mesoporous Materials Family 325
8.2.2 Ordered Microporous Materials 326
8.2.2.1 Zeolites 326
8.2.2.2 Metal Organic Frameworks 330
8.2.2.3 Zeolitic Amidizolate Frameworks 331
8.2.3 Carbon Materials 331
8.2.4 Shaping 333
8.3 Synthesis of Supported Catalysts 333
 8.3.1 Colloidal Synthesis Routes 334
 8.3.2 Chemical Vapor Deposition 337
 8.3.3 Ion Adsorption 338
 8.3.4 Deposition Precipitation 341
 8.3.5 Co-Precipitation 345
 8.3.6 Impregnation and Drying 349
 8.3.6.1 Impregnation 350
 8.3.6.2 Drying 352
 8.3.6.3 Calcination/Thermal Treatment 354
 8.3.6.4 Activation of the Catalyst 356
 Question 1 357
 Question 2 357
 Question 3 358
 References 358

Index 361