Contents

- 1 Introduction to Room-Temperature Catalysis 1 Eduardo J. Garcia-Suarez and Anders Riisager
- 1.1 Introduction 1
- 1.2 Room-Temperature Homogeneous Catalysts 2
- 1.2.1 Ionic-Liquid-Based Catalytic Systems at Room Temperature 2
- 1.2.2 Transition Metal Homogeneous Catalysts 6
- 1.2.2.1 Group 9-Based Homogeneous Catalysts (Co, Rh, Ir) 6
- 1.2.2.2 Group 10-Based Homogeneous Catalysts (Ni, Pd, Pt) 7
- 1.2.2.3 Group 11-Based Homogeneous Catalysts (Ag, Au) 10
- 1.3 Room-Temperature Heterogeneous Catalysts 10
- 1.3.1 Group 9-Based Heterogeneous Catalysts (Co, Rh, Ir) 11
- 1.3.2 Group 10-Based Heterogeneous Catalysts (Ni, Pd, Pt) 13
- 1.3.3 Group 11-Based Heterogeneous Catalysts (Cu, Pt, Au) 23
- 1.4 Conclusions and Perspectives 29 References 31
- 2 Functionalized Ionic Liquid-based Catalytic Systems with Diversified Performance Enhancements 35 Shiguo Zhang and Yanlong Gu
- 2.1 Introduction 35
- 2.2 Functionalized ILs for Enhancing Catalytic Activity 36
- 2.3 Functionalized ILs for Improving Reaction Selectivity 38
- 2.4 Functionalized ILs for Facilitating Catalyst Recycling and Product Isolation 40
- 2.5 Functionalized ILs for Making Relay Catalysis 43
- 2.6 Cation and Anion Synergistic Catalysis in Ionic Liquids 45
- 2.7 Functionalized ILs for Aqueous Catalysis 46
- 2.8 Catalysis by Porous Poly-ILs 47
- 2.9 Functionalized IL-Based Carbon Material for Catalysis 49
- 2.10 Summary and Conclusions 54

References 54

3	Heterogeneous Room Temperature	ļ.
	Catalysis – Nanomaterials 59	
	Liyu Chen and Yingwei Li	
3.1	Introduction 59	
3.2	Solid-Acid-Based Nanomaterials	60
3.3	Grafted-Metal-Ions-Based Nanom	aterial 65
3.4	Metal NPs-Based Nanomaterial	67
3.4	.1 Metal NPs Stabilized by Ligands	67
3.4	.2 Metal NPs@Polymers 68	
3.4	.3 Metal NPs@Metal Oxides 70	
3.4	.4 Metal NPs@Carbonaceous Suppor	rt 72
3.4	.5 Metal NPs@Siliceous Base Suppor	rt <i>74</i>
3.4	0 1	
3.5	Metal Oxide NPs-Based Nanomate	erial 82
3.6	Summary and Conclusions 83	
	References 84	
4	Biocatalysis at Room Temperature	89
•	Ivaldo Itabaiana Jr and Rodrigo O. M.	
4.1	5	
4.2		
	.1 General Features <i>90</i>	
4.2		m Temperature 90
4.3		in reinperature 70
4.3	•	
	.2 Application of Hydrolases at Roon	n Temperature 100
	.2.1 Lipases 100	r
	.2.2 Aldol Additions 101	
	.2.3 Michael Addition 102	
	.2.4 Mannich Reaction 102	
	.2.5 C-Heteroatom and Heteroatom-H	leteroatom Bond
	Formations 103	
4.3	.2.6 Epoxidation 103	
	.2.7 Synthesis of Heterocycles 104	
	.2.8 Kinetic Resolutions 105	
4.3		
	Laccases 108	
4.4		
4.4		
4.5	11	
4.!	• –	
	References 125	
5	Room Temperature Catalysis Enabl Timothy Noël	ed by Light 135
5.1	-	
5. 5.		
5	1.00 r notochemistry 1.50	

- 5.3 Visible Light Photoredox Catalysis 139
- 5.4 Room Temperature Cross-Coupling Enabled by Light 141
- 5.5 Photochemistry and Microreactor Technology A Perfect Match? 144
- 5.6 The Use of Photochemistry in Material Science 146
- 5.7 Solar Fuels 149
- 5.8 Conclusion 151 References 151
- 6 Mechanochemically Enhanced Organic Transformations 155 Davin Tan and Tomislav Friščić
- 6.1 Introduction 155
- 6.2 Mechanochemical Techniques and Mechanisms: Neat versus Liquid-Assisted Grinding (LAG) 156
- 6.3 Oxidation and Reduction Using Mechanochemistry *160*
- 6.3.1 Direct Oxidation of Organic Substrates Using Oxone 160
- 6.3.2 Mechanochemical Halogenations Aided by Oxone 162
- 6.3.3 Reduction Reactions by Mechanochemistry 163
- 6.4 Electrocyclic Reactions: Equilibrium and Templating in Mechanochemistry *165*
- 6.4.1 The Diels–Alder Reaction: Mechanochemical Equilibrium in Reversible C—C Bond Formation *165*
- 6.4.2 Photochemical [2+2] Cycloaddition during Grinding: Supramolecular Catalysis and Structure Templating *167*
- 6.5 Recent Advances in Metal-Catalyzed Mechanochemical Reactions *168*
- 6.5.1 Copper-Catalyzed [2+3] Cycloaddition (Huisgen Coupling) 168
- 6.5.2 Olefin Metathesis by Ball Milling 169
- 6.5.3 Mechanochemical C—H Bond Activation 170
- 6.5.4 Cyclopropanation of Alkenes Using Silver Foil as a Catalyst Source *171*
- 6.6 New Frontiers in Organic Synthesis Enabled by Mechanochemistry *171*
- 6.6.1 Synthesis of Active Pharmaceutical Ingredients (APIs) 172
- 6.6.2 Reactivity Enabled or Facilitated by Mechanochemistry 173
- 6.6.3 Trapping Unstable Reaction Intermediates 175
- 6.7 Conclusion and Outlook 176 Acknowledgments 176 References 176
- 7 Palladium-Catalyzed Cross-Coupling in Continuous Flow at Room and Mild Temperature 183 Christophe Len
- 7.1 Introduction 183
- 7.2 Suzuki Cross-Coupling in Continuous Flow 184
- 7.3 Heck Cross-Coupling in Continuous Flow 192
- 7.4 Murahashi Cross-Coupling in Continuous Flow 199

- 7.5 Concluding Remarks 202 References 202
- 8 Catalysis for Environmental Applications 207

Changseok Han, Endalkachew Sahle-Demessie, Afzal Shah, Saima Nawaz, Latif-ur-Rahman, Niall B. McGuinness, Suresh C. Pillai, Hyeok Choi, Dionysios D. Dionysiou, and Mallikarjuna N. Nadagouda

8.1 Introduction 207

- 8.2 Ferrate (FeO₄²⁻) for Water Treatment 208
- 8.3 Magnetically Separable Ferrite for Water Treatment 209
- 8.3.1 Magnetic Nanoparticles 209
- 8.3.2 Magnetic Recovery of Materials Used for Water Treatment 211
- 8.3.3 Ferrite Photocatalyst for Water Treatment 212
- 8.4 UV, Solar, and Visible Light-Activated TiO₂ Photocatalysts for Environmental Application *212*
- 8.5 Catalysis for Remediation of Contaminated Groundwater and Soils 215
- 8.5.1 Catalytic Oxidative Pathways 215
- 8.5.2 Catalytic Reductive Pathways 217
- 8.5.3 Prospects and Limitations 218
- 8.6 Novel Catalysis for Environmental Applications 218
- 8.6.1 Graphene and Graphene Composites 219
- 8.6.2 Perovskites and Perovskites Composites 221
- 8.6.3 Graphitic Carbon Nitride $(g-C_3N_4)$ and $g-C_3N_4$ Composites 222
- 8.7 Summary and Conclusions 223 Acknowledgments 224 Disclaimer 224 References 224
- 9 Future Development in Room-Temperature Catalysis and
 - Challenges in the Twenty-first Century 231 Fannie P. Y. Lau, R. Luque, and Frank L. Y. Lam

Case Study 1: Magnetic Pd Catalysts for Benzyl Alcohol Oxidation to Benzaldehyde 237

Yingying Li, Frank L.-Y. Lam, and Xijun Hu

- 1.1 Introduction 237
- 1.2 Pd/MagSBA Magnetic Catalyst for Selective Benzyl Alcohol Oxidation to Benzaldehyde 239
- 1.2.1 Results and Discussion 239
- 1.2.1.1 Characterization 239
- 1.2.1.2 Effect of Reaction Temperature 240
- 1.2.1.3 Effect of Pd Loading 241
- 1.2.1.4 Recycling Test 246
- 1.3 Summary and Conclusions 246 References 247

Case Study 2: Development of Hydrothermally Stable
Functional Materials for Sustainable Conversion of Biomass to
Furan Compounds 251
Amrita Chatterjee, Xijun Hu, and Frank LY. Lam
Introduction 251
Metal–Organic-Framework as a Potential Catalyst for Biomass
Valorization 254
Xylose Dehydration to Furfural Using Metal–Organic-Framework,
MIL-101(Cr) 255
Xylose Dehydration Catalyzed by Organosilane Coated
MIL-101(Cr) 255
Xylose to Furfural Transformation Catalyzed by Fly-Ash and
MIL-101(Cr) Composite 258
Xylose to Furfural Transformation Catalyzed by Tin Phosphate and
MIL-101(Cr) Composite 262
Role of Acid Sites, Textural Properties and Hydrothermal Stability of
Catalyst in Xylose Dehydration Reaction 264
Conclusion 267
References 268

Index 273

2.1 2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4