Telesurgery

Sajeesh Kumar
Jacques Marescaux
Editors

Springer
Telesurgery
Sajeesh Kumar, Ph.D.
Centre of Excellence in e-Medicine
Lions Eye Institute
University of Western Australia
2 Verdun Street
Nedlands, 6009 WA, Western Australia

Jacques Marescaux, M.D., F.R.C.S
IRCAD/EITS (European Institute for Telesurgery)
1 place de l’Hôpital, BP 426
67091 Strasbourg, France

Copyright © Springer-Verlag Berlin Heidelberg 2008

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Editor: Gabriele M. Schröder, Heidelberg, Germany
Desk Editor: Stephanie Benko, Heidelberg, Germany
Production: LE-TeX, Jelonek, Schmidt & Vöckler GbR, Leipzig, Germany

Typesetting and reproduction of the figures: Satz-Druck-Service (SDS), Leimen, Germany

Printed on acid-free paper 24/3180YL – 5 4 3 2 1 0
Preface

Developments in telesurgery are progressing at great speed. As a consequence, there is need for a broad overview of the field. This first-ever book on telesurgery is presented in such a way that should make it accessible to anyone, independent of his or her knowledge of technology. The text is designed to be used by all professionals, including surgeons, nurses, allied health professionals, and computer scientists, and not just medical practitioners.

In a very short time, driven by technical developments, the field of telesurgery has become too extensive to be covered by only a small number of experts. Therefore, Telesurgery has been written with chapter contributions from a host of renowned international authorities in telesurgery (see the Table of Contents and the List of Contributors). This ensures that subject matter focusing on recent advances in telesurgery is truly up to date. Our guiding hope during this task was that as editors of multiple chapters and authors, we could still write with a single voice and keep the content coherent and simple. We hope that the clarity of this book makes up for any limitations in its comprehensiveness.

The editors took great care that Telesurgery would not be merely a collection of separate chapters but would offer a consistent and structured overview of the field. We are aware that there is still considerable room for improvement and that certain elements of telesurgery are not fully covered, such as various surgical specialties, legal matters and reimbursement policies. A surgeon holds an array of sensors that is missing in the surgical robotics tools—sensors that can sense texture, temperature, force, pressure, blood pulse and smell! The new generation of tools for surgical robotics may include more sensing capabilities (such as the one explained in Chapter 11) for conveying to the surgeon information regarding the state of the tissue. The editors invite readers to forward their valuable comments and feedback to further improve and expand future editions of Telesurgery.
Books on theoretical and technical aspects inevitably use technical jargon, and this book is no exception. Although jargon is minimized, it cannot be eliminated without retreating to a more superficial level of coverage. The readers’ understanding of the jargon will vary based on their respective backgrounds, but anyone with some background in computers, health, and/or biomedicine should be able to understand most of the terms used. In any case, an attempt to define jargon terms is made in the Glossary.

This *Telesurgery book* has been organized systematically. The format and length of each chapter is standardized, thus ensuring that the content is concise and easy to read. Every chapter provides a comprehensive list of citations and references for further reading. There are numerous figure drawings and clinical photographs throughout, which illustrate and illuminate the text well, providing high-quality visual reference material. Particularly useful features of this text are that each chapter ends with a summary of salient points for the reader.

The book contains 15 chapters and begins with a brief introductory chapter explaining the concepts that are mainstay to telesurgery; subsequent chapters are built on those foundations. Within each chapter, the goal is to provide a comprehensive overview of the topic. The chapters on telementoring and law are deliberately placed in this first edition of the book to emphasize the fundamental importance of these topics. Nevertheless, its content is not inclusive, since opportunities arise progressively in this domain. The final chapter covers future directions for telesurgery.

This book would not have been possible without the assistance of various people. We acknowledge and appreciate the assistance of all reviewers and Ms. Latika Hans, editorial assistant from Bangalore, India. We would like to thank all authors for making this possible through their chapter contributions. Their contributions in the not-too-distant future will be seen as major developments in health care.

Sajeesh Kumar and Jacques Marescaux
Contents

Chapter 1
Introduction to Telesurgery 1
Sajeesh Kumar

1.1 Introduction to Telemedicine 1
1.2 What Is Telesurgery? .. 1
1.3 Does the Robot Actually Perform the Surgery? 2
1.4 Telementoring and Telestration 2
1.5 Telesurgery: Foregoing Technologies 3
1.6 Further Developments 3
1.7 How Many Patients Have Had Robotic Telesurgery?
Who Is Eligible? .. 5
1.8 Patient Acceptance .. 6
1.9 Scope of Telesurgery ... 6
1.10 Relevance of Telesurgery in Developing Countries 6
1.11 Rewards of Telesurgery 7
Summary .. 7
Bibliography .. 8

Chapter 2
Computer-Assisted Remote Surgery 9
Jacques Marescaux, Francesco Rubino, and Luc Soler

2.1 Introduction .. 9
2.2 Education and Training 9
2.3 Preoperative Diagnostics 10
2.4 Preoperative Planning 12
2.5 Intraoperative Applications: Augmented Reality 12
2.6 Remote Surgery .. 14
2.7 Future Developments 17
Summary .. 17
References ... 18
Chapter 3
Telesurgery in Urology

YAZAN F. RAWASHDEH and HENNING OLSEN

3.1 Introduction
3.2 Overview of Telesurgery and Robotics in Urology
3.3 Master-Slave Robots
3.4 Remote Surgery and Telementoring
3.5 Telemedicine and Urology
3.6 Future Directions
Summary
References

Chapter 4
Robot-Assisted Minimally Invasive Brachytherapy for Lung Cancer

AMY LIN, ANA LUISA TREJOS, RAJNI V. PATEL, and RICHARD A. MALTHANER

4.1 Lung Cancer Brachytherapy
4.2 Robotic Minimally Invasive Thoracic Surgery
4.3 Adjuvant Brachytherapy for Lung Cancer
4.4 Robot-Assisted Minimally Invasive Brachytherapy for Lung Cancer
4.4.1 Lung Tumor Localization
4.4.2 Needle Tracking and Guidance
4.4.3 Brachytherapy Treatment Planning
4.4.4 Brachytherapy Seed Delivery System
4.5 System at Canadian Surgical Technologies & Advanced Robotics
4.6 Limitations and Future Directions
4.7 Conclusion
Summary
References

Chapter 5
Robotic-Assisted Heller Myotomy

YOAV MINTZ and SANTIAGO HORGAN

5.1 Background
5.1.1 Etiology
5.1.2 Diagnosis.
Chapter 6

Robotic-Assisted Surgery: Low-Cost Options 67

Jens Rassweiler, Ali S. Goezen, Walter Scheitlin,
Dogu Teber, and Thomas Frede

6.1 Introduction ... 67
6.2 Problems of Endoscopic Surgery 71
 6.2.1 Disturbed Hand-Eye Coordination 71
 6.2.2 Limited Range of Motion 71
 6.2.3 Limited Spherical Vision 72
6.3 Solutions for Endoscopic Surgery 72
 6.3.1 Geometry of Laparoscopy 72
 6.3.2 Working Ergonomics of Laparoscopy 74
 6.3.3 Adjustment of Needle and Needle Holder 74
 6.3.4 Instruments with Six Degrees of Freedom 75
 6.3.5 Stereovision .. 77
 6.3.6 Robotic Camera Holders 77
 6.3.7 Passive Holders for Camera and Instruments 78
 6.3.8 Master-Slave Systems 79
 6.3.8.1 Experimental Robotic Manipulators 80
 6.3.8.2 Clinically Used Robotic Manipulators ... 80
 6.3.8.3 Mechanical Manipulator 81
6.4 Actual Boom of Robotic-Assisted Radical Prostatectomy
 Disadvantages of the da Vinci Device 84
 6.4.1.1 Lack of Tactile Feedback 84
 6.4.1.2 Coordination with the Assistant 84
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.1.3</td>
<td>Learning Curve</td>
<td>85</td>
</tr>
<tr>
<td>6.4.1.4</td>
<td>High Investment and Running Costs</td>
<td>85</td>
</tr>
<tr>
<td>6.5</td>
<td>Future Perspectives and Directions</td>
<td>86</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>86</td>
</tr>
</tbody>
</table>

Chapter 7

The Tele-Echography Robot: a Robot for Remote Ultrasonic Examination

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>91</td>
</tr>
<tr>
<td>7.2</td>
<td>The TER System</td>
<td>92</td>
</tr>
<tr>
<td>7.2.1</td>
<td>System Architecture</td>
<td>92</td>
</tr>
<tr>
<td>7.2.2</td>
<td>TER Releases</td>
<td>93</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Experimental Evaluations</td>
<td>94</td>
</tr>
<tr>
<td>7.3</td>
<td>Clinical Experiments</td>
<td>95</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Clinical Feasibility for Angiology Application</td>
<td>95</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Focused Assessment Sonography for Trauma versus TER in Emergency Trauma Diagnosis</td>
<td>96</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusion</td>
<td>97</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>98</td>
</tr>
</tbody>
</table>

Chapter 8

Information Support for Telesurgery

Kenta Hori

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>101</td>
</tr>
<tr>
<td>8.2</td>
<td>Presentation System</td>
<td>102</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Presentation Interface of Multiple Data</td>
<td>102</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Presentation Methods for the Main View</td>
<td>104</td>
</tr>
<tr>
<td>8.3</td>
<td>Transmission Control</td>
<td>105</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Network-Level Transmission Control</td>
<td>106</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Application-Level Transmission Control</td>
<td>107</td>
</tr>
<tr>
<td>8.4</td>
<td>Data Generation</td>
<td>108</td>
</tr>
<tr>
<td>8.5</td>
<td>Conclusion</td>
<td>109</td>
</tr>
</tbody>
</table>
Chapter 9

Haptics in Telerobotic Systems for Minimally Invasive Surgery

M. Tavakoli and R.V. Patel

9.1 Introduction

9.2 Mechanisms for Haptic Teleoperation

9.2.1 Haptic HMI (Master)

9.2.2 Sensorized Robot (Slave)

9.3 Communication and Control for Haptic Teleoperation

9.4 Experiments: Haptic Telerobotic Palpation of Soft Tissue

9.5 Related Research Problems

9.5.1 Sensory Substitution for Haptic Feedback

9.5.2 Time-Delay Compensation in Haptic Teleoperation

9.5.3 Haptics-Assisted Training

9.6 Conclusion

Summary

Acknowledgments

References

Chapter 10

Robotic Surgery in Ophthalmology

A. Tsirbas, C.W. Mango, and J.P. Hubschman

10.1 Introduction

10.2 Institute and Global Experience

10.2.1 External Ocular Surgery

10.2.2 Anterior Segment Surgery

10.2.3 Posterior Segment Surgery

10.2.4 Conclusions

10.3 Education and Training Opportunities

10.4 Future Directions

10.4.1 Telerobotic Surgery

10.4.2 Telerobotic Mentoring

10.4.3 Novel Imaging Acquisition

10.4.4 Conclusions
Chapter 14

Telesurgery and the Law 171
Neera Bhatia

14.1 Introduction 171
14.2 Licensure 171
14.3 Accreditation 172
14.4 Privacy 172
14.5 Malpractice Liability 173
14.6 Conclusion 175
Summary 176
References 177

Chapter 15

Telesurgery: An Audit 179
Sajeesh Kumar

15.1 Telesurgery Is Still in Its Infancy 179
15.2 Will Telesurgery Replace Traditional Methods? . 179
15.3 Economics of Telesurgery 180
15.4 Issues Related to Telesurgery: a Brief Overview . 181
15.5 An Outlook 183
15.6 Conclusion 183
Summary 184
Bibliography 184

Glossary ... 185

Subject Index 189
List of Contributors

J.J. Banihachemi
Emergency Department
Grenoble University Hospital (South)
38100 Grenoble
France
and
TIMC Laboratory
38100 Grenoble
France

Neera Bhatia
School of Legal Studies
University of Wolverhampton
Arthur Storer Building
Molineux Street
Wolverhampton WV1 1SB
England

E. Boidard
TIMC Laboratory
38100 Grenoble
France

J. L. Bosson
TIMC Laboratory
38100 Grenoble
France
and
Clinical Investigation Centre
Grenoble University Hospital
38100 Grenoble
France
L. Bressollette
Vascular Medicine Department
Brest Hospital
29200 Brest
France
and
LATIM Laboratory
29200 Brest
France

I. Bricault
TIMC Laboratory
38100 Grenoble
France
and
Radiology Department
Grenoble University Hospital (North)
38100 Grenoble
France

W. Randolph Chitwood
Center for Minimally Invasive and Robotic Surgery
East Carolina Heart Institute
Brody School of Medicine at East Carolina University
Greenville, NC 27858-4353
USA

P. Cinquin
TIMC Laboratory
38100 Grenoble
France
and
Technological Innovation Centre (CIT)
Grenoble University Hospital
38100 Grenoble
France
Correspondence to:
IN3S, School of Medicine
Domaine de la Merci
38706 La Tronche cedex
France
G. Ferretti
Radiology Department
Grenoble University Hospital (North)
38100 Grenoble
France

Thomas Frede
Department of Urology
Heilbronn Clinic
University of Heidelberg
Am Gesundbrunnen 20
74074 Heilbronn
Germany

Ali S. Goezen
Department of Urology
Heilbronn Clinic
University of Heidelberg
Am Gesundbrunnen 20
74074 Heilbronn
Germany

Santiago Horgan
Department of Surgery
University of California
San Diego
200 West Arbor Drive
San Diego, CA 92103
USA

Kenta Hori
Gunma Prefectural College of Health Sciences
School of Radiological Technology
323-1 Kamioki-machi
Maebashi, Gunma 323-1
Japan

J.P. Hubschman
Jules Stein Eye Institute
Department of Ophthalmology
Los, Angeles, CA 90095-7000
USA
Sajeesh Kumar
Centre of Excellence in e-Medicine
Lions Eye Institute
University of Western Australia
2 Verdun Street, Nedlands, 6009 WA
Western Australia

Amy Lin
CSTAR and The University of Western Ontario
339 Windermere Road
London, Ontario
Canada N6A 5A5

Richard A. Malthaner
Associate Professor in the Divisions of Thoracic Surgery
Surgical Oncology, and Epidemiology and Biostatistics
Director of Thoracic Research
CSTAR and The University of Western Ontario
339 Windermere Road
London, Ontario
Canada N6A 5A5

C.W. Mango
Weill Cornell Medical College
Cornell University – NY Presbyterian Hospital
NY, 10065-4896
USA

M. Marchal
TIMC Laboratory, 38100 Grenoble
38100 Grenoble
France

Jacques Marescaux
IRCAD/EITS (European Institute for Telesurgery)
1 place de l’Hôpital, BP 426
67091 Strasbourg
France
T. Martinelli
Radiology Department
Grenoble University Hospital (North)
38100 Grenoble
France

Yoav Mintz
Department of Surgery
University of California San Diego
200 West Arbor Drive
San Diego, CA 92103
USA

Anjali Mishra
Assistant Professor
Department of Endocrine Surgery
Sanjay Gandhi Postgraduate Institute of Medical Sciences
Rae-Bareillei Road
Lucknow-226 014, India

Saroj Kanta Mishra
Professor and Head, Department of Endocrine Surgery and Nodal Officer
SGPGI Telemedicine Program,
Sanjay Gandhi Postgraduate Institute of Medical Sciences
Rae-Bareillei Road
Lucknow-226 014
India

A. Moreau-Gaudry
TIMC Laboratory
38100 Grenoble
France
and
Clinical Investigation Centre,
Grenoble University Hospital, France
and
Technological Innovation Centre (CIT)
Grenoble University Hospital
38100 Grenoble
France
L. Wiley Nifong
Center for Minimally Invasive and Robotic Surgery
East Carolina Heart Institute
Brody School of Medicine at East Carolina University
Greenville, NC 27858-4353
USA,
Correspondence to:
Associate Professor
Director of Robotic Surgery and the Robotic Training Center
East Carolina Heart Institute
600 Moye Boulevard, LSB 248
Greenville, NC 27834
USA

Henning Olsen
Consultant Urological Surgeon
Department of Urology
University Hospital of Aarhus-Skejby
Aarhus-8200N
Denmark

Rajni V. Patel
Department of Electrical & Computer Engineering
University of Western Ontario
London, Ontario
Canada N6A 5B9
and
Canadian Surgical Technologies and Advanced Robotics (CSTAR)
339 Winderemere Road
London, Ontario
Canada N6A 5A5

F. Pellissier
France Telecom R&D
38100 Grenoble
France
P.V. Pradeep
Senior Resident
Department of Endocrine Surgery
Sanjay Gandhi Postgraduate Institute of Medical Sciences
Rae-Bareillei Road
Lucknow-226 014
India

Jens Rassweiler
Department of Urology
Heilbronn Clinic
University of Heidelberg
Am Gesundbrunnen 20
74074 Heilbronn
Germany

Yazan F. Rawashdeh
Senior Registrar
Department of Urology/Section of Pediatric Urology
Aarhus University Hospital
Skejby
Denmark

Evelio Rodriguez
Center for Minimally Invasive and Robotic Surgery
East Carolina Heart Institute
Brody School of Medicine at East Carolina University
Greenville
NC, 27858-4353
USA

C. Roux
LATIM Laboratory
29200 Brest
France

Francesco Rubino
IRCAD/EITS (European Institute for Telesurgery)
1 place de l’Hôpital, BP 426
67091 Strasbourg
France
List of Contributors

D. Saragaglia
Emergency Department
Grenoble University Hospital (South)
38100 Grenoble
France

Walter Scheitlin
Department of Urology, Heilbronn Clinic
University of Heidelberg
Am Gesundbrunnen 20
74074 Heilbronn
Germany

Luc Soler
IRCAD/EITS (European Institute for Telesurgery)
1 place de l’Hôpital, BP 426
67091 Strasbourg
France

Brandon Spencer
Nova Southeastern University
Graduate School of Computer and Information Sciences
3301 College Avenue
Ft. Lauderdale, FL 33314
USA
Correspondence to:
511 Sioux Cr.
Kechi, KS 67067
USA

Mahdi Tavakoli
School of Engineering & Applied Sciences
Harvard University
60 Oxford Street, Room 312
Cambridge, MA 02138
USA