Inhalt

Teil I Grundlagen und Grundgleichungen der Strömungsmechanik

1	Eini	iunrung			
2	Hyd	lromecl	hanische Grundlagen	7	
	2.1		portbilanz am Raumelement	7	
		2.1.1	Allgemeine Transportbilanz	7	
		2.1.2	Spezifische Transportbilanzen	9	
	2.2	Dynan	nische und kinematische Wirkungen im Strömungsraum	12	
		2.2.1	Normal- und Schubspannungen	12	
		2.2.2	Verträglichkeitsbedingungen	14	
		2.2.3	Zusammenhang zwischen Spannungs- und		
			Verformungszustand	16	
		2.2.4	Bewegungsgleichungen	20	
		2.2.5	Wirbelbewegung	21	
	2.3		retation und Anwendung der Bewegungsgleichungen	23	
	2.4		imensionale, reibungsfreie Strömung	25	
	2.5		limensionale, viskose Strömung	28	
	2.6		stationäre Strömungen – Oberflächenwellen	30	
		2.6.1	Entwicklung der Grundgleichungen der		
			Flachwassertheorie	33	
		2.6.2	Eindimensionale Flachwassertheorie	35	
		2.6.3	Einfache Welle	40	
		2.6.4	Wellengeschwindigkeit in einem beliebig geformten		
			Gerinnequerschnitt	43	
		2.6.5	Ableitung der Saint-Venant-Gleichungen	44	
3	Gru		n der Turbulenz	49	
	3.1	Einführung in die Turbulenz			
		3.1.1	Kennzeichnung der Problematik	49	
		3.1.2	Die Entwicklung der Ansätze zur Beschreibung der		
			turbulenten Bewegung	51	
		3.1.3	Diskretisierung des Strömungsgebietes	52	

vii

viii	Inhal
------	-------

	3.2		lwerte und Schwankungsgrößen	53
	3.3	Mittel	lung der Grundgleichungen	54
		3.3.1	Ableitung der Reynoldsgleichung	54
		3.3.2	Gemittelte Gleichung für den Fremdstoff-	
			und Energietransport	55
		3.3.3	Gemittelte Grundgleichungen in Tensorschreibweise	55
	3.4		n-gemittelte Grundgleichungen für Strömungen	
		mit fr	eier Oberfläche	58
4	Tur	hulenzi	modelle	61
•	4.1		dnung der Berechnungsmodelle – Übersicht	61
	4.2		lenzparameter	62
		4.2.1	Wirbelviskosität	62
		4.2.2	Wirbeldiffusivität	63
		4.2.3	Prandtlscher Mischungsweg	63
		4.2.4	Turbulente kinetische Energie	64
	4.3		$-\varepsilon$ -Modell	64
	1.5	4.3.1	Definition der Modellparameter	64
		4.3.2	Modellgleichungen	65
		4.3.3	Randbedingungen	66
		4.3.4	Anwendungen	67
		1.5.1	7 m mondangon	0,
Te	il II	Metho	oden der numerischen Strömungssimulation	
5	Einf	führun	g in den Teil II	71
6	E ini	to Diff.	erenzen-Methode	73
U	6.1		hnliche Differentialgleichungen erster Ordnung	73
	6.2		hnliche Differentialgleichungen zweiter Ordnungh	75
	6.3		ichförmige Netze	76
	6.4		lle Differentialgleichungen	70 77
			lel 1: Couette-Strömung mit veränderlicher Viskosität	79
	6.5	6.5.1	Finite-Differenzen-Gleichung	81
			Lösung linearer Gleichungssysteme	82
		6.5.2	Vergleich der exakten Lösung mit den numerischen	02
		6.5.3		92
		D - ' - '	Ergebnissen	93
	6.6	-	el 2: Numerische Lösung der Laplace-Gleichung	93
		6.6.1	Finite-Differenzen-Formulierung	95 95
		6.6.2	Diskretisierung	93 97
		6.6.3	Numerische Lösung	102
	6.7		imensionale viskose Strömungen	102
		6.7.1	Finite-Differenzen-Formulierungen für den Vektor	102
		. . .	der Wirbelintensität	102
		6.7.2	Druck-Geschwindigkeits-Formulierungen für die	105
			viskose Strömung	103

Inhalt ix

		6.7.3	Eindimensionale viskose Stromung in einem	
			Strömungskanal mit veränderlichem Querschnitt	105
		6.7.4	Beispiel 3: Viskose Strömung in einer konischen	
			Rohrleitung	108
	6.8	Instati	onäre eindimensionale Strömungen	115
		6.8.1	Grundgleichungen für eine beliebige Querschnittsform	115
		6.8.2	Numerische Lösung mit der Charakteristikentheorie	117
		6.8.3	Explizite Finite-Differenzen-Methode	119
		6.8.4	Implizite Finite-Differenzen-Methode	121
		6.8.5	Lösung durch parametrische Gruppierung	124
		6.8.6	Beispiel 4: Instationäre Wasserbewegung in einem	
			Kanalabschnitt	128
7	Gal	erkin-N	Aethode	133
	7.1		eichnung der Methode	133
	7.2		el 5: Geschwindigkeitsprofil der zähen Spaltströmung	
			r Galerkin-Methode	134
8	Fini		ımen-Methode	141
	8.1		reibung der Finite-Volumen-Methode	141
	8.2		iel 5: Diffusion	142
	8.3	Diskre	ete Gebietszerlegung zur Bildung der Kontrollvolumina	145
	8.4		ät der Voronoi- und der Delaunay-Zerlegung	146
	8.5	Voron	oi-Region als Kontrollvolumen	148
	8.6	Appro	ximation der Integration der Grundgleichungen	149
		8.6.1	Diffusionsterm	149
		8.6.2	Advektionsterm	150
	8.7	Nume	rische Stabilität	151
9	Fini	te-Elen	nent-Methode	153
	9.1	Diskre	etisierung	153
	9.2	Ansatz	z- und Gewichtsfunktionen	155
	9.3		iel 5: Ermittlung des Geschwindigkeitsprofils der zähen	
		Spalts	trömung mit der Finite-Element-Methode	156
10	Hin	weise z	u den Visual C#-Programmen	163
				165
An	hang		ungsverfahren zur Entwicklung	
			Flachwassergleichungen	165
			mas-Algorithmus	170
			belle der Werte der Stromlinien-Funktion im Beispiel 2	171
			belle der Werte der Stromlinien-Funktion im Beispiel 2	172
			auf der Stromlinien im Beispiel 2	173
An	hang	5: Druc	ckkoeffizienten Cp im Beispiel 2	174

x	In	ıha	ılt	

Anhang 6/1: Variablen nach dem 1. Iterationsschritt im Beispiel 3	175
Anhang 6/2: Variablen nach dem 15. Iterationsschritt im Beispiel 3	176
Anhang 7/1: Anfangswerte der Variablen im Beispiel 4	177
Anhang 7/2: Ergebnisse und Wasserspiegellage im Kanal nach 15,7 s	
im Beispiel 4	178
Literatur	179
Sachverzeichnis	181