Index

a Atomic force microscopy (AFM) 113–115, 114f

b Bio-barcode technique 119
Bioanalytical assay 2
Biosensor 12–13

Condensed-phase fabrication
– biosynthesis 73
– confined microenvironment 62–63
– enzyme-mediated nanoparticle formation 72–73
– growth 72–73
– hard and soft templating 71–72, 72f
– layered/mixed composition 64–66, 65f
– particle generation 59–60, 59f–60f
– shape control, anisotropic structure
 – nanocubes 70–71, 70f
 – nanoprisms 67–69
 – nanorods 66–67, 68f
 – nanostar 71
– seed-mediated growth 66
– single-phase synthetic approach 61, 61f
– size control, synthesis 63–64, 64f
– small metal cluster 60
– solid-phase fabrication 73–74
– stabilization 60–61, 60f
– two-phase synthesis 61–62

c Delocalized surface plasmon (DSP). See Surface plasmon (SP)
Deoxyribonucleic acid (DNA)
– dsDNA 89–91, 90f–91f
– metal nanoparticles 92–93
– oligonucleotides 90
– PCR fragments 90–91
– PNA 92
– primer 90
– RNA 92
– ssDNA 89–92, 91f
– stochiometry 93
– sugar residues 89–90, 90f
Dielectrophoresis (DEP) 164
Double-stranded deoxyribonucleic acid
 (dsDNA) 89–91, 90f–91f
Drude model 6
Drude–Lorentz model 6
Drude–Sommerfeld model 6
Dynamic light scattering (DLS) 108

Electron beam lithography (EBL) 54, 141
Electron energy loss spectroscopy (EELS) 113
Electron microscopy 1–2, 112–113

Far-field optical technique
– Brownian motion 108
– DLS 108
– evanescent field illumination 108
– extinction spectroscopy 107–108
– fluorescence microscopy 108–109
– NTA 108
– optical dark-field microscopy 106–107, 106f–107f
– optical imaging window 109
– photothermal microscopy 109
Fluorescence resonance energy transfer
 (FRET)
– donor and acceptor 135
– gold substrate 137
Fluorescence resonance energy transfer (FRET) (contd.)
- hairpin 136–137
- quenching behavior 136
Focused ion beam (FIB) 54–55

Gas-phase-based fabrication
- evaporation/condensation 58
- island film preparation 58
- laser ablation 58
- particle formation 57–58, 58f

High-resolution microscopy
- EELS 113
- PEEM 113
- scanning probe microscopes 113–115, 114f
- SEM 112–113
- TEM 112

Laser pulse-induced ejection 57
Life science application
- aggregation assay 127–128, 127f
- dissociation assay 126f, 128–129
- drug delivery
 - - DNA molecules 150
 - - hollow structures 148, 148f
 - - inorganic structure 148
 - - liposomes 149
 - - mechanism 149
 - - organic structure 148–149
 - - photothermal release 149
 - - plasmonic heating 149
 - - ensemble sensor 130–133
 - - homogeneous environment 126, 126f
 - - local field control
 - - features 134–135, 135f
 - - fluorescence enhancement 137–139
 - - FRET 135–137
 - - PRET 137
 - - SERS (see Surface-Enhanced Raman Scattering (SERS))
 - - marker material
 - - macroscopic detection 117–118
 - - noble metal nanocluster 121
 - - photoacoustic imaging 120–121
 - - photothermal imaging 120
 - - scattering labels, microarray detection 119
 - - single-particle label 119–120
 - - surface-enhanced optical label 121

- - with fluorescence 118–119
- - molecular refractive index sensing 126f,
 131f, 130–131
- - molecular ruler 129
- - nanoantenna-effect
 - - hyperthermal treatment 145–146
 - - mechanism 143–144, 144f
 - - sub-cellular level manipulation 147–148
 - - thermal DNA analysis 144
 - - thermal-based tissue welding 146–147
 - - nanohole sensing 134
 - - parallelization 133–134
 - - plasmonic nanoparticle sensor 121–122
 - - sensitivity
 - - figure of merit 124
 - - LSP 123–124
 - - refractive index 122–123
 - - resonant wavelength 122–123
 - - single-particle sensors 132–133
 - - spectroscopic setup 126–127, 126f
 - - SPR vs. LSPR 125
 - - strain sensor 129–130

Lithography
- adhesion layer 53
- EBL 54
- FIB 54–55
- microelectronic application 52
- nanoscale pattern 52
- optical lithography 54
- parallel approach 53, 53f
- serial approach 53, 53f
- thin film technology 53

Localized surface plasmon (LSP)
- composition 25–26
- decay length 13–14
- dipole–dipole interaction model 26
- environment influences
 - - advantages 22–25
 - - gold nanoparticles 23–25, 24f
 - - protein shell 22–25, 23f
 - - spectral shift 25
 - - field enhancement
 - - enhancement factor 27–28
 - - fluorescence enhancement 30
 - - incident field 27
 - - line width 28, 28f
 - - plasmon damping 29–30
 - - hollow sphere 22
 - - intraparticle effect 26–27
 - - light-induced displacement 14, 14f
 - - monitor charges 26
 - - nanorods 18–22, 20f
 - - nanostructure 22
 - - optical properties 27
Localized surface plasmon resonance (LSPR).
See Life science application; Localized surface plasmon (LSP)

Lower critical solution temperature (LCST) 165–166

M
Magic number cluster 60
Magnetism 77, 77f
Mercaptohexanol (MCH) 88–89
Metal enhanced fluorescence (MEF) 36–37, 137

Mie Theorie
Molecular constructs 164
Molecules
– bioassay 95–97, 96f
– DNA
– dsDNA 89–90, 90f
– metal nanoparticles 92–93
– oligonucleotides 90
– PCR fragments 90–91
– PNA 92
– primer 90
– RNA 92
– ssDNA 90–92, 91f
– stochiometry 93
– electrostatic interaction 85–86
– hydrophobic interaction 86
– nanomedicine
– active and passive mechanism 99–100
– advantages 98
– cancer cell targeting 99
– factors 99
– gold and silver nanoparticles 98
– nanobiosensors 97–98
– particle coating 99
– PEG 99
– size-dependence 100–101, 101f
– transferrin-coated particles 101
– trastuzumab 100
– peptides and proteins 94–95, 94f
– SAM
– alkanethiol sulfur 87–88, 88f
– cell membrane labeling 89
– definition 86
– mercaptohexanol (MCH) 88–89
– polymerized siloxane 87
– sulfur-containing thiol group 86–87, 87f
– van der Waals interaction 86

m
Nanoantenna 2
Nanocubes 70–71, 70f
Nanofabrication
– bottom-up approach
– biofunctionalized particles 76–77
– condensed-phase fabrication (see Condensed-phase fabrication)
– gas-phase-based fabrication (see Gas-phase-based fabrication)
– integration 78–80, 79f
– magnetism 77, 77f
– monodisperse Fe-core/Ag-shell particles 78
– monodispersity, wet-chemical post-treatment 74–75
– radiation-based post-processing, size tailoring 75, 75f
– semiconductor-plasmonic structures 78
– top-down approach
– lithography (see Lithography)
– nanoimprinting 56
– nanosphere 56
– scanning probe technique 55
– soft lithography 55–56
– surface-bound nanostructure 56–57

Nanoholes
– aluminum film 32
– arrays 30–31
– CCD camera 33–34, 33f
– channel-based approach 32
– chromium nanoholes 34–35, 34f, 36f
– cost-effective detection 33
– DNA assay 35
– flow-through approach 32–33
– fluorescence-labeled molecules 32
– particle-hole hybrid system 35
– single holes 32

Nanomedicine 2, 97
– active and passive mechanism 99–100
– advantages 98
– cancer cell targeting 99
– factors 99
– gold and silver nanoparticles 98
– nanobiosensors 97–98
Index

Nanomedicine (contd.)
- particle coating 99
- size-dependence 100–101, 101f
- transferrin-coated particles 101
- trastuzumab 100
Nanooptics 1
- 2D/3D arrangement 159–160
- anisotropic particles 162
- DNA–DNA particle bridges 159–160
- dyes 162–163
- DNA origami 160–161, 161f
Nanoparticle tracking analysis (NTA) 108
Nanorods 66–67, 68f
Nanosphere lithography (NSL) 139, 141
Nanostar 71
Near-field optical technique
- enhanced spectroscopy 35, 111
- layer-by-layer method 111
- photosensitive molecules 111–112
- SNOM 110–111
Noble metal nanostructure 1–2, 2f
Nucleopore filtration membrane 71

O
Opto acoustic imaging 120–121

P
Parameters of interest 105–106
Peptide nucleic acid (PNA) 92
Photoemission electron microscopy (PEEM) 113
Plasmonic effects
- electrical conductivity
 - Drude model 6
 - Drude–Lorentz model 6
 - Drude–Sommerfeld model 6
 - Ohm law 5
- enhanced spectroscopy
 - enhanced field 35–36
 - metal enhanced fluorescence 36–37
 - principle 36–37, 37f
- Raman spectroscopy 38–39
- SEIRA 45–46
- SERS (see Surface Enhanced Raman Scattering (SERS))
 - TERS 43–45, 44f
- LSP (see Localized surface plasmon (LSP))
- nanoholes (see Nanoholes)
- optical properties and dielectric constant 7–8
- surface plasmon (see Surface plasmon (SP))
- volume plasmon 9
Plasmonic lithography 2
- dielectric constant 164
- electron beam-based/scanning probe technique 157
- LCST 165–166
- nanoscale antenna 157
- nanowires 158–159, 158f
- photosensitive polymer 165
- PNIPAM 165
- resolution limit 157
Plasmonic resonance energy transfer (PRET) 137
Point mutation 129
Poly(ethylene glycol) (PEG) 99
Polymethylmethacrylate (PMMA) 56
Protein denaturation 95

R
Raman spectroscopy 38–39
Refractive index unit (RIU) 25
Ribonucleic acid (RNA) 92

S
Scanning electron microscopy (SEM) 112–113
Scanning near-field optical microscope (SNOM) 110–111
Self-assembly monolayer (SAM)
- alkanethiol sulfur 87–88, 88f
- cell membrane labeling 89
- MCH 88–89
- polymerized siloxane 87
- sulfur-containing thiol group 86–87, 87f
Single-stranded deoxyribonucleic acid (ssDNA) 90–92, 91f–92f
Soft lithography/scanning probe technique 2
Solid-phase fabrication 73–74
Surface enhanced infrared absorption spectroscopy (SEIRA) 45–46
Surface enhanced Raman scattering (SERS)
- analyte detection
 - colloidal noble metal particle 139–140, 140f
 - EBL 141
 - NSL 139, 141
 - reproducible substrate 140
 - UVNIL 141
- chemical effect 40
- electromagnetic effect 40–41
- evanescent field 42
- excitation wavelength 41–42, 42f
- hot-spots 42–43
- labels 141–142, 140f, 142f
- LSP 28–30
- plasmonic lithography 165
– silver electrode 39
Surface plasmon (SP)
– biosensor application 12–13
– flat metallic film
– – dielectric constant 11
– – electromagnetic wave 11
– – evanescent character 11
– – interface 9–10, 10f
– – Kretschmann configuration
– – lightwave coupling 12
– – Otto configuration 12
– – propagation length 11
– – SPP 11–12
Surface plasmon polariton (SPP) 11–12

\(t \)
Tetraoctylammonium bromide (TOAB)
61–62
Thermo acoustic imaging 120–121

\(u \)
Thermosensitive polymer layer (PNIPAM) 165–166
Tip enhanced Raman scattering (TERS) 43
– plasmonic effects 43–45, 44f
Transmission electron microscopy (TEM) 112
Trastuzumab 100
Ultrasensitive bioanalytics 163–164
Ultraviolet nanoimprint lithography (UVNIL) 141
Ultraviolet/visible (UV/VIS) spectrum 19, 21f