Table of Contents

Introduction xxix

Volume 1

Part One Pros and Cons of Inkjet Technology 1

1 Pros and Cons of Inkjet Technology in Industrial Inkjet Printing 3
Werner Zapka

2 Comparing Inkjet with Other Printing Processes and Mainly Screen Printing 7
Gunter Huebner
2.1 Comparing Inkjet with Screen Printing 11
2.2 Screen Printing Principles and Capabilities 13
2.3 Variants of Screen Printing Techniques 14
2.4 Controlling Layer Thickness 16
2.5 Achievable Resolution 17
2.6 Application Examples 18
2.6.1 Printed Antennae 18
2.6.2 Printed Batteries 18
2.6.3 Fine Line Printing 19
2.7 Conclusion and Further Sources of Information 20
References 21

Part Two Inks 23

3 A System Approach to Develop New Platforms of Industrial Inkjet Inks 25
Mark Bale
3.1 Introduction 25
3.2 Ink Technologies for Industrial Inkjet 26
3.2.1 Aqueous 27
Table of Contents

3.2.2 Solvent 28
3.2.3 Oil 29
3.2.4 Hot Melt 30
3.2.5 Energy-Curable 30
3.2.6 Hybrids 31
3.2.7 Choosing an Ink Type 31
3.3 Ink Characterization Methods 31
 3.3.1 Overview of Fluid Measurements 33
 3.3.1.1 Viscosity 33
 3.3.1.2 Surface Tension 33
 3.3.1.3 Particle Size 33
 3.3.1.4 Sedimentation 34
 3.3.1.5 Other Properties 35
 3.3.2 Examples of Dried Ink Evaluation 36
 3.3.2.1 Color 36
 3.3.2.2 Adhesion 36
 3.3.2.3 Mechanical Resistance 37
 3.3.2.4 Fluid Resistance/Compatibility 37
 3.3.2.5 Weathering and Other Stress Tests 37
 3.4 Printhead Evaluation 38
 3.4.1 Equipment 38
 3.4.1.1 Ink Supply 38
 3.4.1.2 Drop Viewing 39
 3.4.2 Drop Visualization in Practice 39
 3.4.2.1 Drop Velocity Determination 40
 3.4.2.2 Waveform Basics 40
 3.4.2.3 Frequency Dependence 41
 3.4.3 Jetting Sustainability 42
 3.4.3.1 Manual Methods 42
 3.4.3.2 Automated Methods 43
 3.4.4 Nozzle Latency/Open Time 43
 3.5 Print Process Factors 44
 3.5.1 Surface Wetting 44
 3.5.1.1 Contact Angle Testing 45
 3.5.1.2 Pretreatment 45
 3.5.2 Ink Interactions 47
 3.5.3 Drying Considerations 47
 3.6 Case Study: Hybrid Aqueous–UV 48
 3.6.1 Ink Concept Introductions 48
 3.6.2 Head Interactions: Latency 49
 3.6.2.1 Head Design Comparisons 49
 3.6.2.2 Influence of Waveform 51
 3.6.2.3 Ink Recirculation 51
 3.6.3 Head Interactions: Sustainability 54
 3.6.4 Substrate Interactions 55
3.6.4.1 Substrate and Ink Comparisons 55
3.6.4.2 Print Process Factors 56
3.6.5 Outlook 56
References 57

4 Photoinitiators 59
Kurt Dietliker and Jürgen Baro
4.1 Historical Background 59
4.2 Photoinitiators 60
4.2.1 Photoinitiators for UV Radical Curing 62
4.2.1.1 Type I Photoinitiators 64
4.2.1.2 Type II Photoinitiators 78
4.2.1.3 Type II Photoinitiators: Photoinitiators with Type I and Type II Functionality 84
4.2.1.4 Type II Photoinitiators: Coinitiators 85
4.2.2 Photoinitiators for Special Applications 86
4.2.2.1 Low-Migration Food Packaging 86
4.2.2.2 UV LED Curing 104
4.2.2.3 Water-Based UV Inkjet 108
References 111

5 UV Radiation Sources and UV Radiation Measurement 117
Kurt Dietliker and Jürgen Baro
5.1 UV Radiation and Energy 117
5.2 UV Radiation Sources 118
5.2.1 Medium-Pressure Mercury Lamp 119
5.2.2 Doped Medium-Pressure Mercury Lamp 120
5.2.3 UV LED 122
5.3 UV Radiation Measurement 123
References 128

6 UV-Curable Inkjet Inks and Their Applications in Industrial Inkjet Printing, Including Low-Migration Inks for Food Packaging 129
Marc Graindourze
6.1 UV Inks for Industrial Applications 129
6.2 UV Curing Process and UV Inkjet Ink Types 130
6.3 UV Inkjet Ink Requirements 132
6.4 UV Inkjet Ink Compounds and Ink Formulations 134
6.5 UV Inkjet Ink Production 138
6.6 Application of UV Inks in Industrial Print Systems 139
6.6.1 Marking and Coding 141
6.6.2 Product Printing 141
6.6.3 Label Printing 142
6.6.4 Packaging 142
6.6.5 Interior Decoration 142
6.7 Low-Migration Inkjet Inks for Migration-Sensitive Applications 142
References 148
Table of Contents

7 Ceramic Inkjet Inks 151
R&D Colorobbia Department

7.1 Introduction 151
7.1.1 Industrial Ceramic Process 151
7.1.2 Digital Ceramic Decoration 151
7.2 Ceramic Ink Characteristics 152
7.2.1 Liquid Fraction 152
7.2.2 Solid Fraction 153
7.2.2.1 Pigments 153
7.2.2.2 Others 154
7.3 Ink Properties 154
7.3.1 Viscosity 155
7.3.2 Surface Tension 156
7.3.3 Density 156
7.3.4 Other Properties 156
7.3.4.1 Filtration Time 156
7.3.4.2 Color/Effect 156
7.4 Shelf Life and Storage 156
7.5 Printing 157
7.5.1 Glaze/Ink Interaction 157
7.5.1.1 Interaction before Firing 157
7.5.1.2 Interaction during Firing 158
7.6 Safety Considerations 160

8 Aqueous Inks and Their Application Areas in Industrial Inkjet Printing and Desktop Printing 163
Philip Double and John Stoffel

8.1 Introduction 163
8.2 Dye-Based Inks 167
8.2.1 Inks with Dyes as Colorants 167
8.2.1.1 Background 167
8.2.1.2 Process 168
8.2.1.3 Dyes and Inks 168
8.2.2 Reactive Dye Inks 169
8.2.2.1 Background 169
8.2.2.2 Process 170
8.2.2.3 Inks and Dyes 170
8.2.3 Disperse Dye Inks 170
8.2.3.1 Dye Sublimation Inks 172
8.3 Inks with Pigments as Colorants 172
8.3.1 Nonfunctional Pigment Inks 173
8.3.1.1 Background 173
8.3.1.2 Processing 173
8.3.2 Pigment Inks with Emulsion Polymers: Latex Inks 173
8.3.2.1 Background 173
8.3.2.2 Processing 174
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.2.3</td>
<td>Inks and Pigments</td>
<td>175</td>
</tr>
<tr>
<td>8.4</td>
<td>Other Aqueous Inks</td>
<td>176</td>
</tr>
<tr>
<td>8.5</td>
<td>Summary and Outlook</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>176</td>
</tr>
<tr>
<td>9</td>
<td>Dye Sublimation Inkjet Inks and Applications</td>
<td>179</td>
</tr>
<tr>
<td>9.1</td>
<td>Overview</td>
<td>179</td>
</tr>
<tr>
<td>9.2</td>
<td>Introduction</td>
<td>179</td>
</tr>
<tr>
<td>9.3</td>
<td>Major Advantages of Sublimation Imaging</td>
<td>181</td>
</tr>
<tr>
<td>9.4</td>
<td>Sublimation Colorants in Digital Imaging</td>
<td>182</td>
</tr>
<tr>
<td>9.5</td>
<td>Ink, Transfer Media, and Substrate</td>
<td>184</td>
</tr>
<tr>
<td>9.6</td>
<td>Color Considerations</td>
<td>187</td>
</tr>
<tr>
<td>9.7</td>
<td>Major Engineering Aspects</td>
<td>188</td>
</tr>
<tr>
<td>9.8</td>
<td>Major Development Opportunities</td>
<td>191</td>
</tr>
<tr>
<td>9.9</td>
<td>Summary</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>193</td>
</tr>
<tr>
<td>10</td>
<td>A Full-System Approach to Formulation of Metal Nanoparticle Inks for Industrial Inkjet Printing</td>
<td>195</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction Inks</td>
<td>195</td>
</tr>
<tr>
<td>10.2</td>
<td>Development and Manufacturing of Functional Particles and Inks</td>
<td>195</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Synthesis of Metal Nanoparticles for Functional Inks: Comparison of Available Methods</td>
<td>196</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Formulation and Application of Functional Inks</td>
<td>199</td>
</tr>
<tr>
<td>10.2.2.1</td>
<td>Formulation Additives</td>
<td>199</td>
</tr>
<tr>
<td>10.3</td>
<td>Characterization of Fluid Systems and Printed Patterns</td>
<td>200</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Physical and Chemical Characterization of Inks</td>
<td>200</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Physical and Electrical Characterization of Printed Patterns</td>
<td>203</td>
</tr>
<tr>
<td>10.3.2.1</td>
<td>Topography Measurement</td>
<td>205</td>
</tr>
<tr>
<td>10.3.2.2</td>
<td>Resistance and Resistivity</td>
<td>205</td>
</tr>
<tr>
<td>10.4</td>
<td>Reliability Characterization</td>
<td>212</td>
</tr>
<tr>
<td>10.5</td>
<td>Summary</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>213</td>
</tr>
<tr>
<td>11</td>
<td>Metal Nanoparticle Conductive Inks for Industrial Inkjet Printing Applications</td>
<td>215</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>215</td>
</tr>
<tr>
<td>11.2</td>
<td>Results and Discussion</td>
<td>216</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Conductive Ink</td>
<td>216</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Inkjet Printing</td>
<td>218</td>
</tr>
<tr>
<td>11.3</td>
<td>Conclusions</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>222</td>
</tr>
</tbody>
</table>
12 Organic Light-Emitting Diode (OLED) and Quantum Dot (QD) Inks and Application 225
 Alexander Lange and Armin Wedel
12.1 OLED Basics 225
12.2 Inkjet Printing of OLED Devices 225
12.2.1 Substrate and Pretreatment for Inkjet Printed OLEDs 225
12.2.1.1 Bottom Emitting OLEDs with Thin, Transparent Electrodes Such as Indium Tin Oxide (ITO) 225
12.2.1.2 An Alternative to ITO: A Grid Structure and a Conductive Polymer 227
12.2.2 Inkjet Printed PEDOT:PSS Layers 228
12.2.3 Inkjet Printed Layers Based on Emissive Polymers 230
12.2.4 Example of a Printed OLED Security Feature 232
12.3 QD Basics 233
12.3.1 Inkjet Printing of QLED Devices 235
12.3.2 Inkjet Printing of QDs on Paper 235
References 236

Part Three Inkjet Printhead Technology 239

13 Concepts and Strategies to Adapt Inkjet Printing to Industrial Application Requirements 241
 Timothy N. Rosario
13.1 Introduction 241
13.2 Legacy Products 241
13.3 Establishing New Technologies 241
13.3.1 MEMS Technology 242
13.3.2 VersaDrop 242
13.4 Q-Class Delivers New Technologies to Market 243
13.5 RediJet: An Innovative New Technology 244
13.6 StarFire™ SG1024/C: A Direct Response 245
13.7 StarFire™ SG1024/A: Built on Success 246
13.8 Samba: Embracing Printhead Technologies 246
13.9 Key Samba Technologies 247
13.9.1 Sputtered Nb-PZT Film 247
13.9.2 Nonwetting Coatings 247
13.10 Looking Forward 248
13.11 Printhead Offerings 249

14 Konica Minolta's Inkjet Printhead Technology 253
 John Corrall
14.1 Early History 253
14.1.1 Type 204 Printhead 254
14.1.2 512 Series 255
14.1.3 KM1024 262
14.1.4 KM1024i 263
14.1.5 KM1800i 266
14.2 Strengths 267
14.2.1 KM Printhead Strengths 267
14.2.2 Reliability 267
14.2.3 Quality 271
14.2.4 Consistency 272
14.2.5 Life 273
14.2.6 Alignment 277
14.3 Markets and Geography 278
14.4 Future Direction 280

15 Xaar’s Inkjet Printing Technology and Applications 285
Jürgen Brünahl, Angus Condie, Mark Crankshaw, Tony Cruz-Uribe, and Werner Zapka
15.1 Xaar Company Introduction 285
15.2 Bulk Technology 285
15.2.1 Piezoelectric Shear Mode and Shared Wall Technology 285
15.2.2 Monolithic Cantilever Architecture 287
15.2.3 Chevron Architecture 289
15.3 Three-Cycle Acoustic Firing 289
15.3.1 Cycles, Phases, and Grayscale 289
15.3.2 Waveforms 291
15.3.3 Additional Waveform Features 293
15.4 Hybrid Side Shooter Architecture: Xaar 1001 Family 295
15.5 Edge-Mounted Side Shooter Architecture: Xaar 501 Family 296
15.6 Ink Recirculation (TF) Technology 297
15.6.1 Hydra Ink Supply 299
15.7 Print Bar System 300
15.8 MEMS Drop Ejectors with Thin Film Piezoelectric Actuators 301
15.8.1 Xaar’s 5601 MEMS Drop Ejector 301
15.8.2 Xaar’s 5601 Printhead 304
15.9 New Inkjet Applications and Development 306
15.10 Summary 309
References 310

16 Hewlett Packard’s Inkjet Printhead Technology 313
Steven J. Simske
16.1 Fundamentals of Inkjet Printing 313
16.1.1 Overview of Inkjetting and Continuous Inkjet (CIJ) 313
16.1.2 Piezoelectric Inkjetting 315
16.1.3 Thermal Inkjetting 316
16.1.4 Other Forms of Inkjetting 319
16.2 Evolution of the Number of Nozzles 319
16.3 Current/Future Improvements: Page-Wide Printing 320
16.4 Inkjetting for Other Processes 321
16.5 A Possible Future of Inkjet in Custom and Surface Manufacturing 322
16.6 Case Study: HP PageWide Array 326
16.6.1 Specifics of the TIJ Technology 326
16.6.2 Printhead Design 327
16.6.3 Drop Formation Process 329
16.6.4 Application Areas 331
References 331

17 Memjet’s Inkjet Printhead Technology and Associated Printer Components 335
Mike Puyot
17.1 A History of Innovation 335
17.2 The Memjet Printing System 335
17.3 The Technical History of Memjet 336
17.4 The Memjet Printhead 336
17.5 Manufacturing the Memjet Printhead 338
17.6 Designed for Success 339
17.7 Balancing Cost vs. Performance 341
17.8 Memjet Inks 342
17.9 A Holistic Approach to Printing Systems 342
17.10 Memjet in the Marketplace 343
17.11 Future Innovations for Ink and Printheads 346
17.12 Continuing to Set the Standard 347
References 348

18 KODAK’s Stream Inkjet Technology 351
Michael Piatt, Douglas Bugner, James Chwalek, and James Katerberg
18.1 Introduction 351
18.2 Principle of Operation 351
18.3 MEMS Technology-Based Printheads 354
18.4 Scalable Technology 354
18.5 Image Quality 355
18.5.1 Dot Size and Resolution 355
18.5.2 Color Gamut 356
18.5.3 Image Registration and Artifact Detection 356
18.6 Ink Technology 357
18.7 Substrates 358
18.8 The Future of Stream Technology 359
References 359

Part Four Substrates 361

19 Paper and Paper-Based Substrates for Industrial Inkjet Printing 363
Wolfgang A. Schmidt
19.1 Definition of Paper 363
19.2 Properties of Paper 364
19.2.1 Bulk Properties 364
19.2.2 Wetting and Surface Properties 366
19.2.3 Porosity and Ink Penetration 366
19.2.4 Physical–Chemical Interaction of Inks with the Paper 367
19.3 Coated Paper, Coating Types, and Surface Properties 368
19.3.1 Porous Coatings 368
19.3.2 Film Coatings 369
19.3.3 Laminates and Composites 369
References 370

20 Polymeric Nonabsorbing Substrates for Industrial Inkjet Printing Applications 373
Rita Hofmann
20.1 Materials: Chemical Composition, Manufacturing Process 373
20.1.1 Polymer Types 373
20.2 Film Manufacturing 377
20.2.1 Film Casting and Extrusion Processes 377
20.2.2 Film Surface Tension and Surface Tension Modification 378
20.3 Material Properties: Chemical, Thermal, Mechanical, Optical, Eco-Environmental 380
20.3.1 Chemical Properties 381
20.3.2 Thermal Properties 381
20.3.3 Mechanical Properties 383
20.3.4 Electrical and Optical Properties 384
20.3.5 Environmental Effects and Durability 386
20.3.6 Barrier Properties 387
20.4 Long-Term Durability and Recycling 388
References 389

21 Glass Substrates for Industrial Inkjet Printing Applications 391
Lutz Parthier, Thomas Wiegel, Clemens Ottermann, and Fredrik Prince
21.1 Introduction: Glass a Universal Material 391
21.2 Glass Types and Main Characteristics 391
21.3 Manufacturing Process 392
21.3.1 Conventional Technology 393
21.3.2 Thin Glass Technology 393
21.4 Physical and Chemical Properties 393
21.4.1 Geometrical Properties 395
21.4.2 Enhanced Glass Strength 395
21.4.3 Glass Surface Properties 396
21.5 Surface Treatments 396
21.5.1 Determination of Surface Quality 396
21.5.2 Surface Treatment Methods to Clean a Surface 398
21.5.3 Surface Cleaning and Coating for Touchscreen Application 400
21.6 Glass Material 401
21.6.1 Optical Glass 401
21.6.2 MEMpax® 402
21.6.3 AF 32® Eco Thin Glass 402
21.6.4 D 263® T Eco Thin Glass 402
21.6.5 B 270® i Ultrawhite Glass 404
21.6.6 Glass Ceramic 404
21.6.7 Photosensitive Glass 405
21.7 Structuring 405

References 407

Part Five Metrology 409

22 Measurement of Complex Rheology and Jettability of Inkjet Inks 411
Tri Tuladhar
22.1 Introduction 411
22.2 Ink Flow Behavior 413
22.3 Bulk and Dynamic Ink Properties 414
22.3.1 Surface Tension 414
22.3.2 Viscoelasticity 415
22.3.3 Other Properties 416
22.4 Complex Rheology Characterization Tools at Jetting Conditions 416
22.4.1 Steady Shear Rheometers 417
22.4.2 High-Frequency Rheometers 417
22.4.3 Extensional Rheometers 418
22.5 Selective Selection of Additives to Optimize Complex Rheology during Ink Formulations 423
22.6 Correlation of Complex Rheology with Jetting Behavior 425
22.6.1 Continuous Inkjet (CIJ) 425
22.6.2 Drop-on-Demand Inks 428
22.7 Conclusions 428

References 429

23 Printhead Health in Industrial Inkjet Printing: In-Line and Off-Line Detection of Poor Drop Formation 431
Herman Wijshoff
23.1 Introduction 431
23.2 Failure Origins 432
23.2.1 Introduction 432
23.2.2 Meniscus Consistency 432
23.2.3 Nozzleplate Wetting 433
23.2.4 Satellite Drops 434
23.2.5 Air Bubbles 435
23.3 Sensing 435
23.3.1 Acoustic Sensing, Paint 435
23.3.2 Capacitive Sensing 436
23.3.3 Impedance Spectroscopy 437
23.3.4 Monitoring Droplet Formation 438
23.4 Feedforward Control 441

References 442
24 **Quantitative Assessment of Inkjet Reliability under Industrial Conditions: Measuring All Drops during Extended High-Duty Printing** 445
Ingo Reinhold and Tomáš Černý

24.1 Summary 445
24.2 Idea and Experimental Setup 446
24.3 Theoretical Considerations 447
24.4 Analysis Algorithm 449
24.4.1.1 Robustness to Nozzle Position Variation 450
24.4.1.2 Low Contrast Optimization 451
24.4.1.3 Histogram Matching 451
24.4.1.4 Summary of the Preflight Techniques 453
24.4.1.5 Analysis of the Droplet Presence 454
24.4.2 Computing Time 456
24.4.3 Conclusion 457
References 457

25 **In-Line Resistance and Temperature Measurement of Conductive Inks** 459
Pit Teunissen, Robert Abbel, Rob Hendriks, and Pim Groen

Reference 461

Part Six Data Flow 463

26 **Data Handling in Industrial Inkjet Printing** 465
Steven J. Simske

26.1 The Extent of Data 465
26.2 Preparing for the Data 466
26.2.1 Using the Data 466
Reference 467

Volume 2

Part Seven Machine Integration 469

27 **System Approach: An Integrator’s Advice on a System Approach for Industrial Inkjet Implementations** 471
Werner Van de Wynckel

27.1 System Approach 471
27.2 The Demonstrator Fail 472
27.3 Automate the Right Process 472
27.4 Early Total Cost of Ownership 473
27.5 Chemical Compatibility 474
27.6 Pressures: Wanted and Unwanted 475
Table of Contents

27.7 Temperature Affects Not Just the Fluid 477
27.8 Ink Systems 478
27.9 Maintenance Systems 480
27.10 Motion Systems 481
27.10.1 Speed 481
27.10.2 Wobble 482
27.10.3 Encoder 483
27.10.4 Printhead 483
27.11 Preprocesses 484
27.12 Postprocesses 485
27.13 Electronics and Software 485
27.14 Humans Are Part of the Total System 487
27.15 A Small System Approach Example: To Pin or Not to Pin 487
27.16 Be Not Afraid of the System But Use It 488
Reference 488

28 Inkjet Platforms for Functional Material Applications: Modular Integration of Industrial Production Processes 489
Kai Keller and David Stüwe
28.1 Introduction 489
28.1.1 Simultaneous Application to Different Industries 489
28.2 Role of the Integrator 490
28.3 Inkjet is Complex: There Is No “Best for Anything” 490
28.4 Important Aspects of Realizing an Inkjet Process 492
28.4.1 Choice of the Printhead 493
28.4.1.1 Material Compatibility 493
28.4.1.2 Recirculating Printhead? 494
28.4.1.3 Rheology 494
28.4.1.4 Availability 494
28.4.1.5 Resolution and Minimal Feature Size 494
28.4.1.6 Productivity 496
28.4.1.7 Specific Pattern Requirements 496
28.4.2 Print Strategy 497
28.4.2.1 Pattern Generation and Adaptation of Print Direction 497
28.4.2.2 Printing onto a Substrate Grid 498
28.4.2.3 Dosing Applications 499
28.4.2.4 Process Evaluation 499
28.4.2.5 Preprocessing 499
28.4.2.6 Postprocessing 500
28.4.2.7 Jetting Evaluation 501
28.5 Platform Design 501
28.5.1 Precision and Repeatability 502
28.5.2 Nozzle Calibration 502
28.5.3 Modular Engineering 502
28.5.4 Platform Layout 502
28.5.5 Print Stage 502
28.5.5.1 Substrate Fixation 502
Part Eight Pre- and Postprocesses 507

29 Surface Pretreatment for Wettability Adjustment 509
Gerhard Liebel and Matthias Beß

29.1 Substrate Surface Condition Matters! 509
29.1.1 Ever Tried to Paint a Wax Candle? 509
29.1.2 Describing Surface Properties 510
29.1.3 Some Facts About Cleanliness of Supplied Substrates 510
29.1.4 Test Methods for Surface Activity 511
29.1.4.1 Test Inks 511
29.1.4.2 Contact Angle Test 511
29.2 Surface Pretreatment Methods 512
29.2.1 The Gentle Power of the Fourth Aggregate State and How Does Plasma Work? 512
29.2.2 A Brief Excursion into Chemistry and Physics of the Plasma Reaction 513
29.2.3 Methods for Surface Pretreatment: Cleaning and Activation 515
29.2.3.1 Vacuum or Low-Pressure Plasma: Chemical Energy without Heat Load 515
29.2.3.2 Corona and Atmospheric Plasma 515
29.2.3.3 Flame Treatment 516
29.2.3.4 UV Ozone Treatment 517
29.3 Industrial Use of Surface Pretreatment 518
29.3.1 Corona 518
29.3.2 Atmospheric Plasma 519
29.3.3 Vacuum Plasma (or Low-Pressure Plasma) 521
29.3.3.1 Plasma Cleaning 522
29.3.3.2 Plasma Activation (or Plasma Modification, Plasma Conditioning) 523
29.3.3.3 Other Terms for Plasma Processing 524
29.4 Choosing the Right Pretreatment Method 525
29.4.1.1 Geometry of Parts and Substrates 525
29.4.2 Process Gas Limitations 525
29.4.3 Process Temperature Limitations 526
29.5 Shelf Life 527
29.6 Summary 528

30 UV LED Ink Curing: UV LED Technology and Solutions for Integration into Industrial Inkjet Printing 529
Dirk Exner
30.1 What Is UV LED Curing? 529
30.2 UV LED Technology Components 529
30.2.1 LEDs: The Base Building Block 530
30.2.2 Array: Grouping of LEDs 531
30.2.3 Cooling: Thermal Management 532
30.2.4 Optics: Guiding the Light 533
30.3 Emission Spectrum 533
30.3.1 UV-A 533
30.3.2 UV-B and UV-C 534
30.4 Power Specifications 535
30.4.1 Peak Irradiance 535
30.4.2 Power 535
30.4.3 Dose 536
30.4.4 Emitting Window Width 536
30.5 Material Formulation 537
30.6 UV LED Benefits 537
30.7 Markets and Applications 538
30.7.1 Digital Inkjet, Screen, and Flexographic Printing 538
30.7.2 Labels and Packaging 539
30.7.3 Posters and Signage 539
30.7.4 Coding and Marking 539
30.7.5 Container Printing 539
30.7.6 Braille Printing 539
30.7.7 Decoration 539
30.7.8 3D Textured Printing 540
30.8 Integration Considerations 540
30.8.1 Pinning 540
30.8.2 Thermal Management and Aerodynamics 540
30.8.3 Stray Light 541
30.9 Summary and Outlook 541

31 Electron-Beam Processing for Industrial Inkjet Printing: Cross-Linking and Curing 543
Urs V. Läuppi
31.1 EB Processes 543
31.1.1 Cross-Linking 543
31.1.2 Curing or Drying 544
31.1.3 EB Curing Enhances Product Qualities 544
31.2 Advantages of EB-Processing 544
31.3 Differences between EB and UV Curing 545
31.4 Curing or Drying 545
31.5 Operating Parameters 547
31.5.1 Penetration of Energetic Electrons 547
31.5.2 Dose 547
31.5.3 Dose Rate: Throughput 548
31.5.4 Operation and Maintenance 548
31.5.5 Inerting 549
31.5.6 Energy Consumption 549
31.5.7 Safety/Shielding 549
31.6 The Classic EB Processor 550
31.7 The ebeam Lamp 550
31.8 EB for Inkjet Applications 553
31.8.1 Inkjet EB Inks 555
31.9 Summary 555
Further Reading 556

32 Photonic Curing Enabling High-Speed Sintering of Metal Inkjet Inks on Temperature-Sensitive Substrates 557
Vahid Akhavan, Kurt Schroder, and Stan Farnsworth
32.1 Photonic Curing of Inkjet-Printed Films 557
32.2 Technology Behind Photonic Curing 558
32.3 Inkjet Printing Combined with Photonic Curing 561
32.4 Summary and Conclusions 564
References 565

33 Oven Drying of Inkjet-Printed Functional Fluids on Industrial Scale 567
Gerard Kaper and Ronald de Graaf
33.1 Drying Process: How to Open the Black Box 567
33.2 Convective Drying Oven 567
33.3 Convective Drying Process 569
33.3.1 Evaporation 570
33.3.2 Curing and Sintering 570
33.4 Oven Temperatures 571
33.5 Air Flow Speed 572
33.6 Web Temperature 573
33.6.1 Infrared Drying in Support of Convective Heating 574
33.7 Lower Explosion Level (LEL) 574
33.8 Condensation 575
33.9 Contamination Control 575
33.9.1 Ambient Control 577
33.9.2 Web Transport through the Oven 577
33.10 Conclusion 578
Part Nine Printing Strategies 579

34 Turning Industrial Application Requirements into Real Solutions 581
Timothy N. Rosario
34.1 Application Development 581
34.2 Productivity 582
34.3 Single-Pass Printing 583
34.3.1 Introduction 583
34.3.2 Drop Size Requirement 583
34.3.3 Drop Placement 585
34.3.4 Placement Error in X 585
34.3.5 Placement Error in Y 587
34.4 Imaging Models 589
34.5 High Standoff Printing 591
34.6 Summary 596
References 597

Part Ten Application Development 599

35 Inkjet Printing for Printed Electronics 601
Pit Teunissen, Robert Abbel, Tamara Eggenhuizen, Michiel Coenen, and Pim Groen
35.1 Technology 601
35.1.1 Introduction 601
35.2 Application Examples 605
35.2.1 Printed Smart Card 605
35.2.2 Inkjet Printing of the Bezel in Touch Panels 606
35.2.3 Multilayer IJP for Smart Labels 609
35.2.4 Inkjet Printed Organic Photovoltaics 610
35.2.5 Inkjet Printing of Two-Colored Organic Light-Emitting Diodes 613
35.3 Conclusions 614
References 615

36 Inkjet-Printed Metal Lines and Sensors on 2D and 3D Plastic Substrates 617
Polzinger Bernhard, Keck Jürgen, Eberhardt Wolfgang, and Zimmermann André
36.1 Introduction 617
36.2 Inkjet Printing of Metal Lines on Injection-Molded Substrates 618
36.2.1 Printing Results 618
36.2.2 Resistance 619
36.2.3 Adhesion 619
36.3 Electrical Connection of Printed Metal Lines 620
36.3.1 Overprinting of Contact Pads 620
36.3.2 Spring Contacts 621
36.3.3 Soldering 621
36.3.4 Isotropic Conductive Adhesive 622
36.4 Inkjet Printing of Metal Lines on 3D Surfaces 622
36.5 Sensors on Injection-Molded Thermoplastic Substrates 624
36.5.1 Temperature Sensor 624
36.5.2 Stress Sensor 625
36.5.3 Touch Sensor 626
36.5.4 Humidity Sensor 627
36.5.5 Fluid-Level Sensor 628
36.5.6 Intrusion Sensor 629
36.5.7 Antennas 630
36.6 Challenges for Commercialization 631
36.7 Summary 632
36.8 About Hahn-Schickard 632
References 632

37 Inkjet and Laser Hybrid Processing: An Enabling Technology for Reliable Production of Fine Interconnects in Large-Area Electronics 635
Adam Brunton and Mickey Crozier
37.1 M-Solv 635
37.2 Introduction 635
37.3 Hybrid Process Examples 636
37.3.1 Manufacture of Capacitive Touch Screens 636
37.3.2 One-Step Interconnect for Thin Film PV 639
37.3.3 Other Benefits of Hybrid Processes 642
37.3.4 Hybrid Processing Machines and Outlook for the Future 644
37.4 Conclusion 645
References 646

38 Industrial 3D Inkjet Printing/Additive Manufacturing 649
Neil Hopkinson and Patrick J. Smith
38.1 Overview of Additive Manufacturing 649
38.2 Inkjet as a Commercially Attractive Enabler in Industrial 3D Printing/Additive Manufacturing 649
38.3 Inkjet Printing and Reaction 651
38.3.1 Direct 3D Inkjet Printing 651
38.4 Inkjet Printing to Enable Selective Sintering 654
38.5 Future Outlook for Inkjet in Industrial 3D Printing/Additive Manufacturing 659
References 659

39 Industrial Applications of 3D Inkjet Printing in the Life Sciences 661
James W. Stasiak
39.1 Introduction 661
39.2 Inkjet Printhead Technology 662
39.3 Printing Functional Materials 664
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.4</td>
<td>Inkjet-Based Bioprinting</td>
<td>666</td>
</tr>
<tr>
<td>39.5</td>
<td>Commercial Inkjet-Based Bioprinting Technologies</td>
<td>669</td>
</tr>
<tr>
<td>39.5.1</td>
<td>Commercial Bioprinting Technologies</td>
<td>669</td>
</tr>
<tr>
<td>39.5.2</td>
<td>From Lab to Fab – Scaling Inkjet-Based Bioprinting</td>
<td>671</td>
</tr>
<tr>
<td>39.6</td>
<td>Inkjet-Based Drug Discovery</td>
<td>674</td>
</tr>
<tr>
<td>39.7</td>
<td>Summary and Outlook</td>
<td>677</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>678</td>
</tr>
<tr>
<td></td>
<td>Part Eleven Successful Implementations and Case Studies</td>
<td>681</td>
</tr>
<tr>
<td>40</td>
<td>Inkjet Technology within the Label Converting Market</td>
<td>683</td>
</tr>
<tr>
<td>40.1</td>
<td>Inkjet Printing of Labels</td>
<td>683</td>
</tr>
<tr>
<td>40.2</td>
<td>Label Functionality</td>
<td>684</td>
</tr>
<tr>
<td>40.3</td>
<td>Not Just a Print Process, but a Manufacturing Process</td>
<td>685</td>
</tr>
<tr>
<td>40.3.1</td>
<td>Substrates</td>
<td>686</td>
</tr>
<tr>
<td>40.4</td>
<td>Converting Processes</td>
<td>689</td>
</tr>
<tr>
<td>40.4.1</td>
<td>Unwinding/Rewinding</td>
<td>689</td>
</tr>
<tr>
<td>40.4.2</td>
<td>Web Cleaning and Corona Treatment</td>
<td>689</td>
</tr>
<tr>
<td>40.4.3</td>
<td>Primer</td>
<td>690</td>
</tr>
<tr>
<td>40.4.4</td>
<td>Printing with High Opacity White Ink</td>
<td>691</td>
</tr>
<tr>
<td>40.4.5</td>
<td>CMYK Process Printing</td>
<td>692</td>
</tr>
<tr>
<td>40.4.6</td>
<td>Spot Color Printing and Emulation</td>
<td>694</td>
</tr>
<tr>
<td>40.4.7</td>
<td>Pantone System</td>
<td>695</td>
</tr>
<tr>
<td>40.4.8</td>
<td>Gamut</td>
<td>696</td>
</tr>
<tr>
<td>40.5</td>
<td>The Advantage of Digital Hybrid</td>
<td>697</td>
</tr>
<tr>
<td>40.5.1</td>
<td>Inline Flood Coat and Spot Varnish</td>
<td>698</td>
</tr>
<tr>
<td>40.5.1.1</td>
<td>Lamination</td>
<td>700</td>
</tr>
<tr>
<td>40.5.2</td>
<td>Peel and Reveal</td>
<td>700</td>
</tr>
<tr>
<td>40.5.3</td>
<td>Cold Stamp Foil</td>
<td>700</td>
</tr>
<tr>
<td>40.5.4</td>
<td>Metallic Process</td>
<td>701</td>
</tr>
<tr>
<td>40.5.5</td>
<td>Spot Colors and Specialist Inks</td>
<td>701</td>
</tr>
<tr>
<td>40.6</td>
<td>Models of Converting Using Inkjet</td>
<td>702</td>
</tr>
<tr>
<td>40.6.1</td>
<td>Desktop Converting</td>
<td>702</td>
</tr>
<tr>
<td>40.6.2</td>
<td>Low Investment</td>
<td>703</td>
</tr>
<tr>
<td>40.6.3</td>
<td>Reel to Reel with Offline Finishing</td>
<td>703</td>
</tr>
<tr>
<td>40.6.4</td>
<td>Reel to Reel with Inline Finishing</td>
<td>704</td>
</tr>
<tr>
<td>40.6.5</td>
<td>Fully Integrated Semirotary or Full Rotary Magnetic Die-Cutting, Slitting, and Sheeting</td>
<td>704</td>
</tr>
<tr>
<td>40.6.6</td>
<td>Fully Integrated Laser-Based Finishing</td>
<td>705</td>
</tr>
<tr>
<td>40.6.7</td>
<td>Third-Party Finishing Solution</td>
<td>705</td>
</tr>
<tr>
<td>40.6.8</td>
<td>Full Hybrid Solution</td>
<td>705</td>
</tr>
<tr>
<td>40.6.9</td>
<td>Retrofit Hybrid Solution</td>
<td>706</td>
</tr>
<tr>
<td>40.7</td>
<td>The Inkjet Advantage</td>
<td>707</td>
</tr>
<tr>
<td>40.8</td>
<td>Market Sectors</td>
<td>708</td>
</tr>
<tr>
<td>40.9</td>
<td>Trends in the Industry</td>
<td>708</td>
</tr>
</tbody>
</table>
40.9.1 Reduced Lead Time 708
40.9.2 Reduction in Quantities and Increase in Frequency of Orders 711
40.9.3 Clearer More Transparent Labeling 711
40.9.4 Variable Data 711
40.9.5 More Stringent Guidelines: New Labeling Technologies 712
40.9.6 Anticounterfeiting and Brand Protection 712
40.9.7 Supply Chain Tracking 713
40.9.8 Sustainability and Eco-friendly Materials 713
40.9.9 Shrink/Stretch Sleeve 713
40.10 Creating a Successful Integration 714
40.10.1 Selecting the Right Printhead Technology for the Label Market 714
40.10.2 Qualifying a Head to a Specific Application 714
40.10.3 Factors to Consider When Selecting a Printhead 714
40.10.4 Reliability 715
40.10.5 Viscosity Range 716
40.10.6 Gray Levels and Resolutions 716
40.10.7 Ability to Print Flat Vibrant Colors 718
40.10.8 Uniformity 718
40.10.9 Highlight Detail 719
40.10.10 Smooth Blends 719
40.11 Example of Commercially Available Inkjet Label Press – Graphium 720

41 Case Study: Digital Label Converting FFEI Ltd – Graphium 723

41.1 Graphium Digital Hybrid Label Press 723
41.2 Productivity 723
41.2.1 Modular 724
41.2.2 Wide Web Width 724
41.2.3 Automated Cleaning 724
41.2.4 Manipulation of the Crossover 724
41.2.5 Finishing 725
41.2.6 Workflow 725
41.2.7 Print Bar 725
41.3 Reliability 725
41.3.1 Printheads 725
41.3.2 Industrial-Grade Transport System 726
41.4 Easing the Production of Complex Label Designs 726
41.4.1 Combining the Power of Digital with the Versatility of Flexo 726
41.4.2 Substrate Choice 726
41.4.3 Fit-for-Purpose 726
41.4.4 Variable Data 727
41.4.5 Banner Printing 727
41.5 Print Quality 727
41.6 Managing a Hybrid Production System 727
41.7 Intelligent Layout 728
41.7.1 MIS Integration 728
41.7.2 CAD Import 728
41.7.3 Automated Image Matching 728
41.7.4 Rules-Based Step and Repeat 728
41.7.5 Versioned and Ganged Labels 728
41.7.6 Object Specific Optimization 729
41.7.7 Job Container with Multiworkflow Automation 729
41.7.8 Variable Data 729
41.7.9 Wide Range of Supported Devices 729

42 Case Study Gallus Labelfire 340: Guiding Question to Choose a Hybrid Inline Label Converting System 731
Martin Leonhard
42.1 Summary 736

43 Cylindrical Packaging Decoration: A Breakthrough in Inkjet Technology 737
John Corrall and Saverio Ardizzone
43.1 Introduction 737
43.2 Background to the Client 737
43.3 Background to IIJ and Konica Minolta Ink Jet Division 738
43.4 The Link with Martinenghi 738
43.5 Ink and UV 741
43.6 Projects and Delivering 742
43.7 Realization of a Dream 745

44 Industrial Inkjet Printing in Decorative Web Print Applications 747
Patrik Lutz
44.1 Introduction 747
44.1.1 History of Décor Paper Printing 747
44.1.2 Markets and Market Sizes 748
44.1.3 Situation and Preview 748
44.2 Technical Description of Décor Printing with Inkjet Printing 748
44.2.1 Décor Paper 748
44.2.2 Applications 751
44.2.2.1 Main Processes 751
44.2.2.2 Products 752
44.2.3 Metamerism 752
44.2.4 Light Shades 752
44.2.5 Selection Criteria for Inkjet Printheads and Inks for Décor Printing 753
44.2.6 What Would Be the Perfect Printhead for a Décor Printing Application? 754
44.2.7 Paper Growth and Ink Type Selection 754
44.2.8 Drying 755
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.2.9</td>
<td>Impregnation</td>
<td>755</td>
</tr>
<tr>
<td>44.2.10</td>
<td>Pressing</td>
<td>756</td>
</tr>
<tr>
<td>44.3</td>
<td>Applications</td>
<td>756</td>
</tr>
<tr>
<td>44.3.1</td>
<td>Printing Applications in Digital Production</td>
<td>756</td>
</tr>
<tr>
<td>44.3.1.1</td>
<td>Project Printing Application</td>
<td>756</td>
</tr>
<tr>
<td>44.3.1.2</td>
<td>Design Development</td>
<td>756</td>
</tr>
<tr>
<td>44.3.1.3</td>
<td>Lab Printing</td>
<td>757</td>
</tr>
<tr>
<td>44.3.1.4</td>
<td>Production Printing</td>
<td>757</td>
</tr>
<tr>
<td>44.4</td>
<td>Example of an Inkjet-Based Machine for Décor Printing</td>
<td>757</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>759</td>
</tr>
<tr>
<td>45</td>
<td>Case Study at TecnoFerrari: Design of a Single-Pass Inkjet Printer for Ceramic Tile Decoration – From Machine Concept to a Complete Solution</td>
<td>761</td>
</tr>
<tr>
<td></td>
<td>Alberto Annovi</td>
<td></td>
</tr>
<tr>
<td>45.1</td>
<td>Ceramic Tiles Decoration Requirements</td>
<td>761</td>
</tr>
<tr>
<td>45.1.1</td>
<td>Background: Ceramic Tiles Manufacturing Process</td>
<td>761</td>
</tr>
<tr>
<td>45.1.2</td>
<td>Ceramic Tiles Typology, Sizes, and Glazing Line Speed</td>
<td>763</td>
</tr>
<tr>
<td>45.1.3</td>
<td>Ceramic Tiles Printing Quality and Color Intensity</td>
<td>765</td>
</tr>
<tr>
<td>45.1.4</td>
<td>Ceramic Inks and Consumption</td>
<td>767</td>
</tr>
<tr>
<td>45.1.5</td>
<td>Productivity and Maintenance</td>
<td>769</td>
</tr>
<tr>
<td>45.1.6</td>
<td>Stability and Reliability</td>
<td>770</td>
</tr>
<tr>
<td>45.1.7</td>
<td>Integration between Analog and Digital Equipment</td>
<td>771</td>
</tr>
<tr>
<td>45.2</td>
<td>Design of a Single-Pass Inkjet Printer for Ceramic Tile Decoration</td>
<td>772</td>
</tr>
<tr>
<td>45.2.1</td>
<td>Frame and Color Bars</td>
<td>772</td>
</tr>
<tr>
<td>45.2.2</td>
<td>Printheads</td>
<td>773</td>
</tr>
<tr>
<td>45.2.3</td>
<td>IDS: Ink Distribution System</td>
<td>775</td>
</tr>
<tr>
<td>45.2.4</td>
<td>Electronics and Print Engine</td>
<td>777</td>
</tr>
<tr>
<td>45.2.5</td>
<td>RIP and Color Management Software</td>
<td>778</td>
</tr>
<tr>
<td>45.2.6</td>
<td>Maintenance Procedure Devices</td>
<td>780</td>
</tr>
<tr>
<td>45.3</td>
<td>Roadmap for Next Future Tile Inkjet Printing</td>
<td>781</td>
</tr>
<tr>
<td>45.3.1</td>
<td>Aqueous-Based Inks versus Solvent-Based Inks</td>
<td>781</td>
</tr>
<tr>
<td>45.3.2</td>
<td>Fully Digital Multiprinter Production Lines</td>
<td>784</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>785</td>
</tr>
<tr>
<td>46</td>
<td>Concepts for “Direct-to-Shape” Inkjet Printing onto Curved Surfaces</td>
<td>787</td>
</tr>
<tr>
<td></td>
<td>Debbie Thorp and Nick Geddes</td>
<td></td>
</tr>
<tr>
<td>46.1</td>
<td>Introduction</td>
<td>787</td>
</tr>
<tr>
<td>46.1.1</td>
<td>Core Concepts</td>
<td>787</td>
</tr>
<tr>
<td>46.1.1.1</td>
<td>Printing onto Cylinders or Tubes</td>
<td>795</td>
</tr>
<tr>
<td>46.1.1.2</td>
<td>Printing onto Cones</td>
<td>795</td>
</tr>
<tr>
<td>46.1.1.3</td>
<td>Printing onto Spheres</td>
<td>796</td>
</tr>
<tr>
<td>46.1.1.4</td>
<td>Printing onto Tubs</td>
<td>797</td>
</tr>
<tr>
<td>46.1.2</td>
<td>Looking to the Future</td>
<td>797</td>
</tr>
</tbody>
</table>
Case Study at KHS: Digital Decoration of Plastic Bottles – From Machine Concept to a Complete Solution 799

Martin Schach and Katrin Preckel

Introduction 799
Motivation for Digital Direct-to-Shape 800
Machine Concept 802
Influencing Factors 803
Ink 811
Robustness and Appearance 811
Food Safety and Sustainability 812
Ink Migration 812
Recyclability 813
Customers Requirements, Software, and User Concept 814
Customers and Environment 814
Software and Workflow Concepts 814
Industry 4.0 and Direct Print 815

Hymmen Digital Décor Printing: Empowering the Laminate Industry 817

Aliasgar Eranpurwala

Introduction 817
The Laminate Flooring Industry 817
Why the Shift to Digital Printing? 820
Hymmen’s Approach: The JUPITER Digital Printing Line 821
Technical Challenges 825
Case Study 1: Roll to Roll JUPITER JPT-W-840 827
Case Study 2: Board Printing JUPITER JPT-C-2100 828
Key Features 831
Outlook: Improvements Ahead 831

High-Speed Inkjet Application in Newspaper Printing 833

Peter Schulmeister

Introduction 833
Applications and Business Models 833
Gaming and Lotteries 833
Cross Media 835
Microzoning 835
Logistics 835
Combination of Various Applications in One Print Product 835
Newspaper Printing 836
Newspaper Printing Presses 839
Newspaper Print Production 839
Arrangement of the Digital Print Unit in the Press 839
Requirements for Inline Digital Printing in Newspapers 840
Inkjet Print Technologies 841
Selection of Inkjet Technology 841
The manroland web systems Product Inkjet Integration 842
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.6.1</td>
<td>Web Lead Module Details</td>
<td>843</td>
</tr>
<tr>
<td>49.6.2</td>
<td>Automation Module Details</td>
<td>845</td>
</tr>
<tr>
<td>49.6.3</td>
<td>Integrated Inkjet Workflow/Usability</td>
<td>847</td>
</tr>
<tr>
<td>49.6.4</td>
<td>Integrated Inkjet Operation</td>
<td>848</td>
</tr>
<tr>
<td>49.7</td>
<td>Print Quality Optimization</td>
<td>848</td>
</tr>
<tr>
<td>50</td>
<td>Inkjet for Nanoimprint Lithography</td>
<td>851</td>
</tr>
<tr>
<td>50.1</td>
<td>Introduction</td>
<td>851</td>
</tr>
<tr>
<td>50.2</td>
<td>Nanoimprint Lithography Process</td>
<td>853</td>
</tr>
<tr>
<td>50.3</td>
<td>Inkjet System Design Considerations</td>
<td>854</td>
</tr>
<tr>
<td>50.4</td>
<td>J-FIL Applications in Semiconductors</td>
<td>862</td>
</tr>
<tr>
<td>50.5</td>
<td>Looking Forward</td>
<td>864</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>866</td>
</tr>
</tbody>
</table>

Glossary 869

Index 877