Artificial Neural Networks in Pattern Recognition
Springer Berlin (Verlag)
978-3-540-37951-5 (ISBN)
Unsupervised Learning.- Simple and Effective Connectionist Nonparametric Estimation of Probability Density Functions.- Comparison Between Two Spatio-Temporal Organization Maps for Speech Recognition.- Adaptive Feedback Inhibition Improves Pattern Discrimination Learning.- Semi-supervised Learning.- Supervised Batch Neural Gas.- Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes.- On the Effects of Constraints in Semi-supervised Hierarchical Clustering.- A Study of the Robustness of KNN Classifiers Trained Using Soft Labels.- Supervised Learning.- An Experimental Study on Training Radial Basis Functions by Gradient Descent.- A Local Tangent Space Alignment Based Transductive Classification Algorithm.- Incremental Manifold Learning Via Tangent Space Alignment.- A Convolutional Neural Network Tolerant of Synaptic Faults for Low-Power Analog Hardware.- Ammonium Estimation in a Biological Wastewater Plant Using Feedforward Neural Networks.- Support Vector Learning.- Support Vector Regression Using Mahalanobis Kernels.- Incremental Training of Support Vector Machines Using Truncated Hypercones.- Fast Training of Linear Programming Support Vector Machines Using Decomposition Techniques.- Multiple Classifier Systems.- Multiple Classifier Systems for Embedded String Patterns.- Multiple Neural Networks for Facial Feature Localization in Orientation-Free Face Images.- Hierarchical Neural Networks Utilising Dempster-Shafer Evidence Theory.- Combining MF Networks: A Comparison Among Statistical Methods and Stacked Generalization.- Visual Object Recognition.- Object Detection and Feature Base Learning with Sparse Convolutional Neural Networks.- Visual Classification of Images by Learning Geometric Appearances Through Boosting.- An Eye Detection System Based on Neural Autoassociators.- Orientation Histograms for Face Recognition.- Data Mining in Bioinformatics.- An Empirical Comparison of Feature Reduction Methods in the Context of Microarray Data Classification.- Unsupervised Feature Selection for Biomarker Identification in Chromatography and Gene Expression Data.- Learning and Feature Selection Using the Set Covering Machine with Data-Dependent Rays on Gene Expression Profiles.
| Erscheint lt. Verlag | 29.8.2006 |
|---|---|
| Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
| Zusatzinfo | X, 302 p. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 445 g |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Schlagworte | Artificial Neural Network • Artificial Neural Networks • Bayesian networks • Bioinformatics • bio-inspired computation • clutering • Cognition • Computational Intelligence • Data Mining • fault tolerance • image classification • knowledge management • learning • machine learning • Multiple Classifier Systems • neural network • Object recognition • pattern mining • pattern recognition • Self-Organizing Maps • Semi-Supervised Learning • spatio-temporal maps • supervised learning • Support Vector Machines • Unsupervised Learning |
| ISBN-10 | 3-540-37951-7 / 3540379517 |
| ISBN-13 | 978-3-540-37951-5 / 9783540379515 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich