Semiconductor Power Devices - Josef Lutz, Heinrich Schlangenotto, Uwe Scheuermann, Rik De Doncker

Semiconductor Power Devices

Physics, Characteristics, Reliability
Buch | Softcover
XII, 536 Seiten
2014 | 2011
Springer Berlin (Verlag)
978-3-642-42348-2 (ISBN)
139,09 inkl. MwSt
The book starts with basic semiconductor physics, followed by some aspects of production technology. It explains power diodes, thyristors, MOSFETs and IGBTs as well as discusses standard packaging technologies, materials and reliability investigations.

Semiconductor power devices are the heart of power electronics. They determine the performance of power converters and allow topologies with high efficiency. Semiconductor properties, pn-junctions and the physical phenomena for understanding power devices are discussed in depth. Working principles of state-of-the-art power diodes, thyristors, MOSFETs and IGBTs are explained in detail, as well as key aspects of semiconductor device production technology. In practice, not only the semiconductor, but also the thermal and mechanical properties of packaging and interconnection technologies are essential to predict device behavior in circuits. Wear and aging mechanisms are identified and reliability analyses principles are developed. Unique information on destructive mechanisms, including typical failure pictures, allows assessment of the ruggedness of power devices. Also parasitic effects, such as device induced electromagnetic interference problems, are addressed. The book concludes with modern power electronic system integration techniques and trends.

Josef Lutz joined Semikron in Nuremberg, Germany, in 1983. First he worked in the development of GTO thyristors, then in the field of fast recovery diodes. He introduced the Controlled Axial Lifetime (CAL) diode, is holder of several patents regarding fast diodes, and has published more than 100 papers and conference contributions. In 1999 he received his Ph.D. in electrical engineering at the University of Ilmenau, Germany. Since August 2001 he is Professor for Power Electronics and Electromagnetic Compatibility at the Chemnitz University of Technology, Germany. He is member of the board of directors of the ZfM, of the International Steering Committee of the EPE, advisory board of the PCIM, of the program committee of the ISPS and CIPS. In 2005 he was awarded the rank of an honourable professor at the North Caucasus State Technical University in Stavropol. Uwe Scheuermann joined Semikron in Nuremberg, Germany, after completing his Ph.D. in semiconductor physics in 1990. After spending 5 years with the development of diode and thyristor chips, he changed his focus to the development of power modules. He has been involved in the development of the advanced power module families without base plates and the implementation of new packaging concepts like spring contacts. He has published more than 30 papers and holds several patents in the field of packaging technology. Today, he is at Semikron responsible for the reliability of components. He is a member of the board of directors of the PCIM Europe and of the program committee of the CIPS. Since 2006 he is engaged as an external lecturer at the Friedrich-Alexander-University of Erlangen. Rik De Doncker received his degree of Doctor in Electrical Engineering from the Katholieke Universiteit Leuven, Belgium in 1986. During 1987 he was appointed Visiting Associate Professor at the University of Wisconsin, Madison. In 1988, he was employed as a General Electric Company fellow at the microelectronic center IMEC, Leuven, Belgium. In Dec. 1988, he joined the General Electric Company at the Corporate Research and Development Center, Schenectady, NY where he led research on drives and high power soft-switching converters, ranging from 100 kW to 4 MW, for aerospace, industrial and traction applications. In 1994 he joined Silicon Power Corporation (formerly GE-SPCO) as Vice President Technology where he worked on high power converter systems and MTO devices and was responsible for the development and production of world’s first 15 kV medium voltage transfer switch. Since Oct. 1996 he became professor at the RWTH-Aachen, where he leads the Institute für Stromrichtertechnik und Elektrische Antriebe (ISEA). In Oct. 2006 he became director of the E.ON Energy Research Center at RWTH Aachen University. Heinrich Schlangenotto received the Ph.D. degree in theoretical physics at the University of Münster, in 1966 he joined the Research Institute of AEG-Telefunken in Frankfurt. Working on operation principles of semiconductor power devices, he improved the description of forward conduction based on a new insight in the spatial distribution of recombination. Investigating the injection and temperature dependence of radiative recombination, which is used in analyzing device operation, he finds an important influence of exciton formation even near room temperature. A major point of his work was the development of device concepts such as the fast, soft recovery SPEED-diode. He gave the first quantitative description of the dynamical avalanche mechanism limiting fast switching. From 1991 to 2001 he held a lecture on power devices at the Technical University of Darmstadt. His results were published in many papers and conference reports.

Power Semiconductor Devices - Key Components for Efficient Electrical Energy Conversion Systems.- Semiconductor Properties.- pn - Junctions.- Short introduction to power device technology.- pin-Diodes.- Schottky Diodes.- Bipolar Transistors.- Thyristors.- MOS Transistors.- IGBTs.- Packaging and Reliability of Power Devices.- Destructive Mechanisms in Power Devices.- Power Device Induced Oscillations and Electromagnetic Disturbances.- Power Electronic Systems.- Appendix.- Index.

lt;p>Aus den Rezensionen:

"... Das Buch ist eine erweiterte, aktualisierte englische Version des deutschen Buchs der Autoren. Es präsentiert Leistungshalbleiter auf umfassender Weise ... Das Buch prasentiert auch diverse Störungen und Schwingungen, die durch Schaltvorgänge bei Leistungskomponenten verursacht werden. ... Die Lektüre schafft es, fundierte Theorie praxisnah und verständlich zu vermitteln. Ein gründliches, ausgewogenes Buch, das sowohl Energietechnik-Studierenden als auch Leistungselektronik-Entwicklungsingenieuren eine Fülle an wertvollen Informationen und Einsichten bietet." (in: Bulletin SEV/VSE, 7/October/2011, Issue 10, S. 68)

Erscheint lt. Verlag 9.12.2014
Zusatzinfo XII, 536 p.
Verlagsort Berlin
Sprache englisch
Original-Titel Halbleiter-Leistungsbauelemente
Maße 155 x 235 mm
Gewicht 831 g
Themenwelt Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Fast Diodes • IGBT • MOFSET • Packaging Technology
ISBN-10 3-642-42348-5 / 3642423485
ISBN-13 978-3-642-42348-2 / 9783642423482
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Siegfried Hunklinger; Christian Enss

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
89,95
Festkörperphysik

von Gerhard Franz

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
89,95

von Rudolf Gross; Achim Marx

Buch | Hardcover (2022)
De Gruyter Oldenbourg (Verlag)
79,95