Statistical Methods for Imbalanced Data in Ecological and Biological Studies - Osamu Komori, Shinto Eguchi

Statistical Methods for Imbalanced Data in Ecological and Biological Studies

Buch | Softcover
59 Seiten
2019 | 1st ed. 2019
Springer Verlag, Japan
978-4-431-55569-8 (ISBN)
53,49 inkl. MwSt
This book presents a fresh, new approach in that it provides a comprehensive recent review of challenging problems caused by imbalanced data in prediction and classification, and also in that it introduces several of the latest statistical methods of dealing with these problems. The book discusses the property of the imbalance of data from two points of view. The first is quantitative imbalance, meaning that the sample size in one population highly outnumbers that in another population. It includes presence-only data as an extreme case, where the presence of a species is confirmed, whereas the information on its absence is uncertain, which is especially common in ecology in predicting habitat distribution. The second is qualitative imbalance, meaning that the data distribution of one population can be well specified whereas that of the other one shows a highly heterogeneous property. A typical case is the existence of outliers commonly observed in gene expression data, and another is heterogeneous characteristics often observed in a case group in case-control studies. The extension of the logistic regression model, maxent, and AdaBoost for imbalanced data is discussed, providing a new framework for improvement of prediction, classification, and performance of variable selection. Weights functions introduced in the methods play an important role in alleviating the imbalance of data. This book also furnishes a new perspective on these problem and shows some applications of the recently developed statistical methods to real data sets.

Osamu Komori, The Institute of Statistical Mathematics,  Shinto Eguchi, The Institute of Statistical Mathematics

1. Imbalance Data.- 2. Weighted Logistic Regression.- 3. Beta-Maxent.- 4. Generalized-t Statistic.- 5. Machine Learning Methods for Imbalance Data.

Erscheint lt. Verlag 15.7.2019
Reihe/Serie JSS Research Series in Statistics
SpringerBriefs in Statistics
Zusatzinfo 7 Illustrations, color; 15 Illustrations, black and white; VIII, 59 p. 22 illus., 7 illus. in color.
Verlagsort Tokyo
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie
Naturwissenschaften Biologie
Sozialwissenschaften Soziologie Empirische Sozialforschung
Schlagworte Divergence and Entropy • Generalized Linear Model • Imbalanced Data • machine learning methods • Maxent
ISBN-10 4-431-55569-2 / 4431555692
ISBN-13 978-4-431-55569-8 / 9784431555698
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Weg zur Datenanalyse

von Ludwig Fahrmeir; Christian Heumann; Rita Künstler …

Buch | Softcover (2024)
Springer Spektrum (Verlag)
49,99
Eine Einführung für Wirtschafts- und Sozialwissenschaftler

von Günter Bamberg; Franz Baur; Michael Krapp

Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
29,95