The Drift Diffusion Equation and Its Applications in MOSFET Modeling - Wilfried Hänsch

The Drift Diffusion Equation and Its Applications in MOSFET Modeling

Buch | Softcover
XII, 271 Seiten
2011 | 1. Softcover reprint of the original 1st ed. 1991
Springer Wien (Verlag)
978-3-7091-9097-5 (ISBN)
53,49 inkl. MwSt
To be perfect does not mean that there is nothing to add, but rather there is nothing to take away Antoine de Saint-Exupery The drift-diffusion approximation has served for more than two decades as the cornerstone for the numerical simulation of semiconductor devices. However, the tremendous speed in the development of the semiconductor industry demands numerical simulation tools that are efficient and provide reliable results. This makes the development of a simulation tool an interdisciplinary task in which physics, numerical algorithms, and device technology merge. For the sake of an efficient code there are trade-offs between the different influencing factors. The numerical performance of a program that is highly flexible in device types and the geometries it covers certainly cannot compare with a program that is optimized for one type of device only. Very often the device is sufficiently described by a two dimensional geometry. This is the case in a MOSFET, for example, if the gate length is small compared with the gate width. In these cases the geometry reduces to the specification of a two-dimensional device. Here again the simplest geometries, which are planar or at least rectangular surfaces, will give the most efficient numerical codes. The device engineer has to decide whether this reduced description of the real device is still suitable for his purposes.

1 Boltzmann's Equation.- 1.1 Introduction.- 1.2 Many-Body System in Equilibrium.- 1.3 Non-Equilibrium Green's Functions.- References.- 2 Hydrodynamic Model.- 2.1 Introduction.- 2.2 Linear Response and Relaxation-Time Approximation.- 2.3 Nonlinear Response and the Moment Method.- 2.4 Summary.- References.- 3 Carrier Transport in an Inversion Channel.- 3.1 Introduction.- 3.2 The Classical Limit ? ? 0.- 3.3 Surface Mobility.- References.- 4 High Energetic Carriers.- 4.1 Introduction.- 4.2 Impact Ionization Scattering Strength.- 4.3 Distribution Function.- 4.4 Impact Ionization Coefficient and Gate Oxide Injection.- References.- 5 Degredation.- 5.1 Introduction.- 5.2 Analyzing a Degraded MOSFET.- 5.3 The Degradation Process.- References.- Appendix 1. Perturbation Theory and Diagram Technique.- Appendix 2. Inversion Channel Particle-Density Distribution in Equilibrium.- Author Index.

Erscheint lt. Verlag 30.12.2011
Reihe/Serie Computational Microelectronics
Zusatzinfo XII, 271 p.
Verlagsort Vienna
Sprache englisch
Maße 170 x 244 mm
Gewicht 501 g
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Bridge • Energy • Halbleiterbauelement • Ladungstransport • Mechanics • metal oxide semiconductur field-effect transistor • metal oxide semiconductur field-effect transistor (MOSFET) • Model • Modeling • quantum mechanics • scattering • semiconductor • semiconductor device • Stress • Surface • Transport
ISBN-10 3-7091-9097-5 / 3709190975
ISBN-13 978-3-7091-9097-5 / 9783709190975
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
Mehr entdecken
aus dem Bereich
DIN-Normen und Technische Regeln für die Elektroinstallation

von DIN; ZVEH; Burkhard Schulze

Buch | Softcover (2023)
Beuth (Verlag)
86,00