Zum Hauptinhalt springen
Nonlinear Functional Evolutions in Banach Spaces -  Ki Sik Ha

Nonlinear Functional Evolutions in Banach Spaces

(Autor)

Buch | Hardcover
352 Seiten
2003 | 2003 ed.
Kluwer Academic Publishers (Verlag)
978-1-4020-1091-0 (ISBN)
139,09 inkl. MwSt
Gives an account of the state of the theory of nonlinear functional evolutions associated with multi-valued operators in infinite dimensional real Banach spaces. This book is suitable for graduate students and researchers working in diverse fields such as mathematics, physics, biochemistry, and sociology.
There are many problems in nonlinear partial differential equations with delay which arise from, for example, physical models, biochemical models, and social models. Some of them can be formulated as nonlinear functional evolutions in infinite-dimensional abstract spaces. Since Webb (1976) considered autonomous nonlinear functional evo­ lutions in infinite-dimensional real Hilbert spaces, many nonlinear an­ alysts have studied for the last nearly three decades autonomous non­ linear functional evolutions, non-autonomous nonlinear functional evo­ lutions and quasi-nonlinear functional evolutions in infinite-dimensional real Banach spaces. The techniques developed for nonlinear evolutions in infinite-dimensional real Banach spaces are applied. This book gives a detailed account of the recent state of theory of nonlinear functional evolutions associated with accretive operators in infinite-dimensional real Banach spaces. Existence, uniqueness, and stability for 'solutions' of nonlinear func­ tional evolutions are considered. Solutions are presented by nonlinear semigroups, or evolution operators, or methods of lines, or inequalities by Benilan. This book is divided into four chapters. Chapter 1 contains some basic concepts and results in the theory of nonlinear operators and nonlinear evolutions in real Banach spaces, that play very important roles in the following three chapters. Chapter 2 deals with autonomous nonlinear functional evolutions in infinite-dimensional real Banach spaces. Chapter 3 is devoted to non-autonomous nonlinear functional evolu­ tions in infinite-dimensional real Banach spaces. Finally, in Chapter 4 quasi-nonlinear functional evolutions are con­ sidered in infinite-dimensional real Banach spaces.

1. Nonlinear Evolutions.- 2. Autonomous Nonlinear Functional Evolutions.- 3. Non—Autonomous Nonlinear Functional Evolutions.- 4. Quasi—Nonlinear Functional Evolutions.- References.

Erscheint lt. Verlag 28.2.2003
Zusatzinfo X, 352 p.
Verlagsort Dordrecht
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 1-4020-1091-5 / 1402010915
ISBN-13 978-1-4020-1091-0 / 9781402010910
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
84,99