The Physics of Clinical MR Taught Through Images - Val M. Runge, Wolfgang Nitz, Johannes Thomas Heverhagen

The Physics of Clinical MR Taught Through Images

Buch | Softcover
336 Seiten
2018 | 4. Auflage
Thieme Medical Publishers Inc (Verlag)
978-1-62623-427-7 (ISBN)
59,95 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
»The Physics of Clinical MR Taught Through Images«, Fourth Edition, by Val Runge, Wolfgang Nitz, and Johannes Heverhagen presents a unique and highly practical approach to understanding the physics of magnetic resonance imaging. Each physics topic is described in user-friendly language and accompanied by high-quality graphics and/or images. The visually rich format provides a readily accessible tool for learning, leveraging, and mastering the powerful diagnostic capabilities of MRI.

Key Features:

  • More than 700 images, anatomical drawings, clinical tables, charts, and diagrams, including magnetization curves and pulse sequencing, facilitate acquisition of highly technical content.
  • Eight systematically organized sections cover core topics: hardware and radiologic safety; basic image physics; basic and advanced image acquisition; flow effects; techniques specific to the brain, heart, liver, breast, and cartilage; management and reduction of artifacts; and improvements in MRI diagnostics and technologies.
  • Cutting-edge topics including contrast-enhanced MR angiography, spectroscopy, perfusion, and advanced parallel imaging/data sparsity techniques.
  • Discussion of groundbreaking hardware and software innovations, such as MR-PET, 7 T, interventional MR, 4D flow, CAIPIRINHA, radial acquisition, simultaneous multislice, and compressed sensing.
  • A handy appendix provides a quick reference of acronyms, which often differ from company to company.
The breadth of coverage, rich visuals, and succinct text make this manual the perfect reference for radiology residents, practicing radiologists, researchers in MR, and technologists.

Contents



Preface
Acknowledgments
Contributors
Section I. Hardware

1 Components of an MR Scanner
2 MR Safety: Static Magnetic Field
3 MR Safety: Gradient Magnetic and Radiofrequency Fields
4 Radiofrequency Coils
5 Multichannel Coil Technology: Part 1
6 Multichannel Coil Technology: Part 2
7 Open MR Systems
8 Magnetic Field Effects At 3 T and Beyond
9 Mid-Field, High-Field, and Ultra-High-Field (1.5, 3, 7 T)
10 Advanced Receiver Coil Design
11 Advanced Multidimensional RF Transmission Design


Section II. Basic Imaging Physics

12 Imaging Basics: k-space, Raw Data, Image Data
13 Image Resolution: Pixel and Voxel Size
14 Imaging Basics: Signal-to-Noise Ratio
15 Imaging Basics: Contrast-to-Noise Ratio
16 Signal-to-Noise Ratio versus Contrast-to-Noise Ratio
17 Signal-to-Noise Ratio in Clinical 3 T
18 Slice Orientation
19 Multislice Imaging and Concatenations
20 Number of Averages
21 Slice Thickness
22 Slice Profile
23 Slice Excitation Order (in Fast Spin Echo Imaging)
24 Field of View (Overview)
25 Field of View (Phase Encoding Direction)
26 Matrix Size: Readout
27 Matrix Size: Phase Encoding
28 Partial Fourier
29 Image Interpolation (Zero Filling)
30 Specific Absorption Rate


Section III. Basic Image Acquisition

31 T1, T2, and Proton Density
32 Calculating T1 and T2 Relaxation Times (Calculated Images)
33 Spin Echo Imaging
34 Fast Spin Echo Imaging
35 Fast Spin Echo: Reduced Refocusing Angle
36 Driven-Equilibrium Fourier Transformation (DEFT)
37 Reordering: Phase Encoding
38 Magnetization Transfer
39 Half Acquisition Single-Shot Turbo Spin Echo (HASTE)
40 Spoiled Gradient Echo
41 Refocused (Steady State) Gradient Echo
42 Echo Planar Imaging
43 Inversion Recovery: Part 1
44 Inversion Recovery: Part 2
45 Fluid-Attenuated IR with Fat Saturation (FLAIR FS)
46 Fat Suppression: Spectral Saturation
47 Water Excitation, Fat Excitation
48 Fat Suppression: Short Tau Inversion Recovery (STIR)
49 Fat Suppression: Phase Cycling
50 Fat Suppression: Dixon
51 3D Imaging: Basic Principles
52 Contrast Media: Gadolinium Chelates with Extracellular Distribution
53 Contrast Media: Gd Chelates with Improved Relaxivity
54 Contrast Media: Other Agents (Non-Gadolinium)


Section IV. Advanced Image Acquisition

55 Dual-Echo Steady State (DESS)
56 Balanced Gradient Echo: Part 1
57 Balanced Gradient Echo: Part 2
58 PSIF: The Backward-Running FISP
59 Constructive Interference in a Steady State (CISS)
60 TurboFLASH
61 PETRA (UTE)
62 3D Imaging: MP-RAGE
63 3D Imaging: SPACE
64 Susceptibility-Weighted Imaging
65 Volume Interpolated Breath-Hold Examination (VIBE)
66 Diffusion-Weighted Imaging
67 Multi-Shot EPI
68 Diffusion Tensor Imaging
69 Blood Oxygen Level-Dependent (BOLD) Imaging: Theory
70 Blood Oxygen Level-Dependent (BOLD) Imaging: Applications
71 Proton Spectroscopy (Theory)
72 Proton Spectroscopy (Chemical Shift Imaging)
73 Simultaneous Multislice


Section V. Flow

74 Flow Effects: Fast and Slow Flow
75 Phase Imaging: Flow
76 2D Time-of-Flight MRA
77 3D Time-of-Flight MRA
78 Flip Angle, TR, MT, and Field Strength (in 3D TOF MRA)
79 Phase Contrast MRA
80 4D Flow MRI
81 Advanced Non-Contrast MRA Techniques
82 Contrast-Enhanced MRA: Basics; Renal, Abdomen
83 Contrast-Enhanced MRA: Carotid Arteries
84 Contrast-Enhanced MRA: Peripheral Circulation
85 Dynamic CE-MRA (TWIST)
86 Dynamic Susceptibility Perfusion Imaging
87 Arterial Spin Labeling


Section VI. Tissue-Specific Techniques

88 Brain Segmentation, Quantitative MR Imaging
89 Cardiac Morphology
90 Cardiac Function
91 Cardiac Imaging: Myocardial Perfusion
92 Cardiac Imaging: Myocardial Viability
93 T1/T2/T2* Quantitative Parametric Mapping in the Heart
94 MR Mammography: Dynamic Imaging
95 MR Mammography: Silicone
96 Hepatic Fat Quantification
97 Hepatic Iron Quantification
98 Elastography
99 Magnetic Resonance Cholangiopancreatography (MRCP)
100 Cartilage Mapping


Section VII. Artifacts, Including Those Due to Motion, and the Reduction Thereof

101 Aliasing
102 Truncation Artifacts
103 Motion: Ghosting and Smearing
104 Motion Reduction: Triggering, Gating, Navigator Echoes
105 Abdomen: Motion Correction
106 BLADE (PROPELLER)
107 TWIST VIBE
108 Radial VIBE (StarVIBE)
109 GRASP
110 Filtering Images (to Reduce Artifacts)
111 Geometric Distortion
112 Chemical Shift: Sampling Bandwidth
113 Artifacts: Magnetic Susceptibility
114 Maximizing Magnetic Susceptibility
115 Artifacts: Metal
116 Minimizing Metal Artifacts
117 Gradient Moment Nulling
118 Spatial Saturation
119 Shaped Saturation
120 Advanced Slice/Sub-Volume Shimming
121 Flow Artifacts


Section VIII. Further Improving Diagnostic Quality, Technologic Innovation

122 Faster and Stronger Gradients: Part 1
123 Faster and Stronger Gradients: Part 2
124 Faster and Stronger Gradients: Part 3
125 Image Composing
126 Filtering Images (to Improve SNR)
127 Parallel Imaging: Part 1
128 Parallel Imaging: Part 2
129 CAIPIRINHA
130 Zoomed EPI
131 Compressed Sensing
132 Cardiovascular Imaging: Compressed Sensing
133 Interventional MR
134 7 T Brain
135 7 T Knee
136 Continuous Moving Table
137 Integrated Whole-Body MR-PET
138 3D Evaluation: Image Post-Processing
139 Automatic Image Alignment
140 Workflow Optimization


Section IX. Appendix

141 Acronyms


Index

Erscheinungsdatum
Verlagsort New York
Sprache englisch
Maße 229 x 152 mm
Gewicht 634 g
Einbandart kartoniert
Themenwelt Medizinische Fachgebiete Radiologie / Bildgebende Verfahren Kernspintomographie (MRT)
Medizinische Fachgebiete Radiologie / Bildgebende Verfahren Nuklearmedizin
Medizinische Fachgebiete Radiologie / Bildgebende Verfahren Radiologie
Medizin / Pharmazie Studium
Schlagworte MRI • MRT • Physics
ISBN-10 1-62623-427-2 / 1626234272
ISBN-13 978-1-62623-427-7 / 9781626234277
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich