Audio Electronics -  John Linsley Hood

Audio Electronics (eBook)

eBook Download: PDF | EPUB
1998 | 2. Auflage
400 Seiten
Elsevier Science (Verlag)
978-0-08-049957-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
66,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is a unique electronics text in that it focuses on the electronics of audio design and explores the principles and techniques that underly the successful design and usage of analog and digital equipment.


The second edition includes new material on the latest developments in the field: digital radio and television, Nicam 728, and the latest Dolby noise reduction systems.

John Linsley Hood is responsible for numerous amplifier designs that have led the way to better sound, and has also kept up a commentary on developments in audio in magazines such as The Gramophone, Electronics in Action and Electronics World.

Up-to-date material on the latest technological developments
John Hood is a well-known and respected commentator on this industry

Audio Electronics is a unique electronics text in that it focuses on the electronics of audio design and explores the principles and techniques that underly the successful design and usage of analog and digital equipment. The second edition includes new material on the latest developments in the field: digital radio and television, Nicam 728, and the latest Dolby noise reduction systems. John Linsley Hood is responsible for numerous amplifier designs that have led the way to better sound, and has also kept up a commentary on developments in audio in magazines such as The Gramophone, Electronics in Action and Electronics World. Up-to-date material on the latest technological developments John Hood is a well-known and respected commentator on this industry

Front Cover 1
Audio Electronics 4
Copyright Page 5
Contents 6
Preface 13
Chapter 1. Tape recording 14
The basic system 14
Magnetic tape 14
The recording process 17
Causes of non-uniform frequency response 20
Record/replay equalisation 22
Head design 25
Recording track dimensions 31
HF bias 32
The tape transport mechanism 38
Transient performance 39
Tape noise 40
Electronic circuit design 43
Replay equalisation 47
Bias oscillator circuits 49
The record amplifier 52
Recording level indication 54
Tape drive motor speed control 55
Professional recording equipment 55
General description 56
Multi-track machines 60
Digital recording systems 61
Chapter 2. Tuners and radio receivers 70
Background 70
Basic requirements 70
The influence of the ionosphere 71
Why VHF transmissions? 76
AM or FM? 77
FM broadcast standards 79
Stereo encoding/decoding 79
GE/Zenith 'pilot tone' system 79
PCM programme distribution system 83
Supplementary broadcast signals 88
Alternative transmission methods 88
SSB broadcasting 89
Radio receiver design 92
Circuit design 127
New developments 129
Appendices 130
Chapter 3. Preamplifiers and input signals 132
Requirements 132
Signal voltage and impedance levels 132
Gramophone pick-up inputs 133
Input circuitry 136
Moving coil PU head amplifier design 140
Circuit arrangements 141
Input connections 148
Input switching 149
Chapter 4. Voltage amplifiers and controls 153
Preamplifier stages 153
Linearity 153
Noise levels 162
Output voltage characteristics 163
Voltage amplifier design 164
Constant-current sources and 'current mirrors' 167
Performance standards 172
Audibility of distortion 175
General design considerations 181
Controls 182
Chapter 5. Power output stages 202
Valve amplifier designs 202
Early transistor circuits 205
Listener fatigue and crossover distortion 205
Improved transistor amplifier designs 208
Power MOSFETs 209
Output transistor protection 214
Power output and power dissipation 216
General design considerations 219
Slew-rate limiting and TID 220
Advanced amplifier designs 224
Alternative design approaches 232
Contemporary amplifier design practice 240
Sound quality and specifications 242
Chapter 6. The compact disc and digital audio 246
Why use digital techniques? 246
Problems with digital encoding 247
The record–replay system 252
The replay system 258
Error correction 273
Chapter 7. Test Instruments and measurements 278
Instrument types 279
Signal generators 279
Alternative waveform types 290
Distortion measurement 297
Oscilloscopes 307
Chapter 8. Loudspeaker crossover systems 318
Why necessary? 318
Cone design 319
Soundwave dispersion 322
Crossover system design 322
Crossover component types 328
LS output equalisation 329
Active crossover systems 330
Active filter design 332
Bi-wiring and tri-wiring 335
Chapter 9. Power supplies 337
The importance of the power supply unit 337
Circuit layouts 339
Circuit problems 341
Full-wave rectifier systems 341
Transformer types and power ratings 345
Stabilised PSU circuits 346
Commercial power amp. PSUs 350
Output source impedance and noise 351
Transformer noise and stray magnetic fields 354
Chapter 10. Noise reduction techniques 355
Bandwidth limitation 355
Pre-emphasis 356
'Noise masking' and 'companding' 356
Attack and decay times 357
Signal level limiting 358
Gramophone record 'click' suppression 358
Proprietory noise reduction systems 359
Digital signal processing and noise reduction 362
Chapter 11. Digital audio broadcasting 365
Broadcasting system choices 365
Digital radio and TV: the growth of complexity 367
Phase shift modulation systems 368
Multiplex (MUX) systems 368
Perceptual coding 369
Avoidance of time delay distortion 369
DAB transmitter and receiver layouts 370
The NICAM-728 TV stereo sound system 372
The NICAM-728 audio signal 373
Sound quality 376
Further reading 376
Index 378

Chapter 2

Tuners and radio receivers


BACKGROUND


The nineteenth century was a time of great technical interest and experiment in both Europe and the USA. The newly evolved disciplines of scientific analysis were being applied to the discoveries which surrounded the experimenters and which, in turn, led to further discoveries.

One such happening occurred in 1864, when James Clerk Maxwell, an Edinburgh mathematician, sought to express Michael Faraday’s earlier law of magnetic induction in proper mathematical form. It became apparent from Maxwell’s equations that an alternating electromagnetic field would give rise to the radiation of electromagnetic energy.

This possibility was put to the test in 1888 by Heinrich Hertz, a German physicist. He established that this did indeed happen, and radio transmission became a fact. By 1901, Marconi, using primitive spark oscillator equipment, had transmitted a radio signal in Morse code across the Atlantic. By 1922 the first commercial public broadcasts had begun for news and entertainment.

By this time, de Forrest’s introduction of a control grid into Fleming’s thermionic diode had made the design of high power radio transmitters a sensible engineering proposition. It had also made possible the design of sensitive and robust receivers. However, the problems of the system remain the same, and the improvements in contemporary equipment are merely the result of better solutions to these, in terms of components or circuit design.

BASIC REQUIREMENTS


These are

 selectivity – to be able to select a preferred signal from a jumble of competing programmes;

 sensitivity – to be sure of being able to receive it reliably;

 stability – to be able to retain the chosen signal during the required reception period;

 predictability – to be able to identify and locate the required reception channel;

 clarity – which requires freedom from unwanted interference and noise, whether this originates within the receiver circuit or from external sources;

 linearity – which implies an absence of any distortion of the signal during the transmission/reception process.

These requirements for receiver performance will be discussed later under the heading of receiver design. However, the quality of the signal heard by the listener depends very largely on the nature of the signal present at the receiver. This depends, in the first place, on the transmitter and the transmission techniques employed.

In normal public service broadcasting – where it is required that the signal shall be received, more or less uniformly, throughout the entire service area – the transmitter aerial is designed so that it has a uniform, 360°, dispersal pattern. Also the horizontal shape of the transmission ‘lobe’ (the conventional pictorial representation of relative signal strength, as a function of the angle) is as shown in Fig. 2.1.

Fig. 2.1 Typical transmitter aerial lobe pattern.

The influence of ground attenuation, and the curvature of the earth’s surface, mean that in this type of transmission pattern the signal strength, gets progressively weaker as the height above ground level of the receiving aerial gets less, except in the immediate neighbourhood of the transmitter. There are a few exceptions to this rule, as will be shown later, but it is generally true, and implies that the higher the receiver aerial can be placed, in general the better.

THE INFLUENCE OF THE IONOSPHERE


The biggest modifying influence on the way the signal reaches the receiver is the presence of a reflecting – or, more strictly, refracting – ionized band of gases in the outer regions of the earth’s atmosphere. This is called the ionosphere and is due to the incidence of a massive bombardment of energetic particles on the outer layers of the atmosphere, together with ultra-violet and other electromagnetic radiation, mainly from the sun.

This has the general pattern shown in Fig. 2.2 if plotted as a measure of electron density against height from the surface. Because it is dependent on radiation from the sun, its strength and height will depend on whether the earth is exposed to the sun’s radiation (daytime) or protected by its shadow (night).

Fig. 2.2 The electron density in the ionosphere.

As the predominant gases in the earth’s atmosphere are oxygen and nitrogen, with hydrogen in the upper reaches, and as these gases tend to separate somewhat according to their relative densities, there are three effective layers in the ionosphere. These are the ‘D’ (lowest) layer, which contains ionised oxygen/ozone; the ‘E’ layer, richer in ionised nitrogen and nitrogen compounds; and the ‘F’ layer (highest), which largely consists of ionised hydrogen.

Since the density of the gases in the lower layers is greater, there is a much greater probability that the ions will recombine and disappear, in the absence of any sustaining radiation. This occurs as the result of normal collisions of the particles within the gas, so both the ‘D’ and the ‘E’ layers tend to fade away as night falls, leaving only the more rarified ‘F’ layer. Because of the lower gas pressure, molecular collisions will occur more rarely in the ‘F’ layer, but here the region of maximum electron density tends to vary in mean height above ground level.

Critical frequency


The way in which radio waves are refracted by the ionosphere, shown schematically in Fig. 2.3, is strongly dependent on their frequency, with a ‘critical frequency’ (‘Fc’) dependent on electron density, per cubic metre, according to the equation

c=9√Nmax

Fig. 2.3 The refraction of radio waves by the ionosphere.

where Nmax is the maximum density of electrons/cubic metre within the layer. Also, the penetration of the ionosphere by radio waves increases as the frequency is increased. So certain frequency bands will tend to be refracted back towards the earth’s surface at different heights, giving different transmitter to receiver distances for optimum reception, as shown in Fig. 2.4, while some will not be refracted enough, and will continue on into outer space.

Fig. 2.4 The influence of frequency on the optimum transmitter to receiver distance – the ‘skip distance’.

The dependence of radio transmission on ionosphere conditions, which, in turn depends on time of day, time of year, geographical latitude, and ‘sun spot’ activity, has led to the term ‘MUF’ or maximum usable frequency, for such transmissions.

Also, because of the way in which different parts of the radio frequency spectrum are affected differently by the possibility of ionospheric refraction, the frequency spectrum is classified as shown in Table 2.1. In this VLF and LF signals are strongly refracted by the ‘D’ layer, when present, MF signals by the ‘E’ and ‘F’ layers, and HF signals only by the ‘F’ layer, or not at all.

Table 2.1

Classification of radio frequency spectrum

VLF 3–30 kHz
LF 30–300 kHz
MF 300–3000 kHz
HF 3–30 MHz
VHF 30–300 MHz
UHF 300–3000 MHz
SHF 3–30 GHz

Additionally, the associated wavelengths of the transmissions (from 1 00 000–1000 m in the case of the VLF and LF signals, are so long that the earth’s surface appears to be smooth, and there is a substantial

reflected ‘ground wave’ which combines with the direct and reflected radiation to form what is known as a ‘space wave’. This space wave is capable of propagation over very long distances, especially during daylight hours when the ‘D’ and ‘E’ layers are strong.

VHF/SHF effects


For the VHF to SHF regions, different effects come into play, with very heavy attenuation of the transmitted signals, beyond direct line-of-sight paths, due to the intrusions of various things which will absorb the signal, such as trees, houses, and undulations in the terrain. However, temperature inversion layers in the earth’s atmosphere, and horizontal striations in atmospheric humidity, also provide mechanisms, especially at the higher end of the frequency spectrum, where the line of sight paths may be extended somewhat to follow the curvature of the earth.

Only certain parts of the available radio frequency (RF) spectrum are allocated for existing or future commercial broadcast use. These have been subclassified as shown in Table 2.2, with the terms ‘Band 1’ to ‘Band 6’ being...

Erscheint lt. Verlag 16.11.1998
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
ISBN-10 0-08-049957-0 / 0080499570
ISBN-13 978-0-08-049957-4 / 9780080499574
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 15,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 9,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99
Grundlagen - Verfahren - Anwendungen - Beispiele

von Jens Bliedtner

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
49,99