Traffic Engineering and QoS Optimization of Integrated Voice and Data Networks -  Gerald R. Ash

Traffic Engineering and QoS Optimization of Integrated Voice and Data Networks (eBook)

eBook Download: PDF
2006 | 1. Auflage
512 Seiten
Elsevier Science (Verlag)
978-0-08-046605-7 (ISBN)
Systemvoraussetzungen
65,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book describes, analyzes, and recommends traffic engineering (TE) and quality of service (QoS) optimization methods for integrated voice/data dynamic routing networks. These functions control a network's response to traffic demands and other stimuli, such as link failures or node failures. TE and QoS optimization is concerned with measurement, modeling, characterization, and control of network traffic, and the application of techniques to achieve specific performance objectives. The scope of the analysis and recommendations include dimensioning, call/flow and connection routing, QoS resource management, routing table management, dynamic transport routing, and operational requirements. Case studies are included which provide the reader with a concrete way into the technical details and highlight why and how to use the techniques described in the book.

* Includes Case Studies of MPLS & GMPLS Network Optimization
* Presents state-of-the-art traffic engineering and quality of service optimization methods and illustrates the tradeoffs between the various methods discussed
* Contains practical Case Studies based on large-scale service provider implementations and architecture plans
* Written by a highly respected and well known active expert in traffic engineering and quality of service
This book describes, analyzes, and recommends traffic engineering (TE) and quality of service (QoS) optimization methods for integrated voice/data dynamic routing networks. These functions control a network's response to traffic demands and other stimuli, such as link failures or node failures. TE and QoS optimization is concerned with measurement, modeling, characterization, and control of network traffic, and the application of techniques to achieve specific performance objectives. The scope of the analysis and recommendations include dimensioning, call/flow and connection routing, QoS resource management, routing table management, dynamic transport routing, and operational requirements. Case studies are included which provide the reader with a concrete way into the technical details and highlight why and how to use the techniques described in the book. Includes Case Studies of MPLS and GMPLS Network Optimization Presents state-of-the-art traffic engineering and quality of service optimization methods and illustrates the tradeoffs between the various methods discussed Contains practical Case Studies based on large-scale service provider implementations and architecture plans Written by a highly respected and well known active expert in traffic engineering and quality of service

Front Cover 1
Title Page 4
Copyright Page 5
Table of Contents 8
Foreword 18
Preface 20
Acknowledgments 28
About the Author 30
Chapter 1 Traffic Engineering and QoS Optimization Models 32
1.1 Introduction 32
1.2 Terminology and Definitions 36
1.3 TQO Background and Motivation 43
1.4 TQO Functional Model 46
1.4.1 Traffic/Application Layer 49
1.4.2 MPLS LSPs/Layer 3 52
1.4.3 Logical Links/GMPLS LSPs/Layer 2 55
1.4.4 Physical Fiber Transport/Layer 1 59
1.4.5 Operational/Management Layer 59
1.5 TQO Design 60
1.5.1 TQO Design Problem Statement 60
1.5.1.1 Traffic/Application Layer Design 60
1.5.1.2 MPLS LSP Dynamic Routing and Bandwidth Allocation Layer 3 Design 60
1.5.1.3 GMPLS LSP (Logical Link) Routing and Bandwidth Allocation Layer 2 Design 61
1.5.1.4 Physical Fiber Transport/Layer 1 Design 61
1.5.1.5 Operational/Management Layer Design 61
1.5.2 TQO Design Approach 62
1.5.2.1 Design and Operational Experience 62
1.5.2.2 Modeling, Analysis, and Case Studies 63
1.6 TQO Design and Operational Experience 64
1.6.1 Design and Operational Experience in Data Networks 64
1.6.1.1 Data Network Routing Layer Design/Operational Experience 64
1.6.1.2 Data Network Management Layer Design/Operational Experience 67
1.6.2 Design and Operational Experience in Voice Networks 68
1.6.2.1 Voice Network Routing Layer Design/Operational Experience 68
1.6.2.2 Voice Network Management Layer Design/Operational Experience 72
1.6.2.3 Benefits Derived from TQO Design/Operational Experience in Voice Networks 74
1.6.3 TQO Design Principles and Benefits Derived from Experience 78
1.7 Modeling, Analysis, and Case Studies 79
1.7.1 Analysis, Design, and Optimization Methods Used in Modeling Studies 80
1.7.1.1 Routing Design and Optimization Methods 80
1.7.1.2 Capacity Design and Optimization Methods 81
1.7.1.3 QoS and GoS Performance Measures 82
1.7.2 Key Results from Modeling Studies 83
1.8 Generic TQO (GTQO) Protocol and Benefits 83
1.9 Standards Needs to Realize GTQO Protocol Requirements 86
1.10 Conclusion and Applicability of Requirements 87
Chapter 2 Call/Session Routing and Connection Routing Methods 90
2.1 Introduction 90
2.2 Call/Session Routing Methods 92
2.3 Connection (Bearer-Path) Routing Methods 94
2.3.1 Hierarchical Fixed Routing Path Selection 99
2.3.2 Time-Dependent Routing Path Selection 100
2.3.3 State-Dependent Routing Path Selection 103
2.3.4 Event-Dependent Routing Path Selection 106
2.4 Internetwork Routing 106
2.5 Modeling of TQO Methods 109
2.5.1 Network Design Comparisons 120
2.5.2 Network Performance Comparisons 122
2.5.3 Single-Area Flat Topology vs Multiarea Two-Level Hierarchical Network Topology 124
2.5.4 Network Modeling Conclusions 126
2.6 Summary and Conclusions 128
2.7 Applicability of Requirements 129
Chapter 3 Traffic Engineering and QoS Optimization of MPLS-Based Integrated Voice/Data Dynamic Routing Networks 130
3.1 Introduction 130
3.2 Class-of-Service Routing 137
3.2.1 Class-of-Service Identification 137
3.2.2 Routing Table Derivation 138
3.2.3 Class-of-Service Routing Steps 140
3.3 Dynamic Bandwidth Allocation, Protection, and Reservation Principles 141
3.3.1 Per-VNET Bandwidth Allocation, Protection, and Reservation 144
3.3.1.1 Per-VNET Bandwidth Allocation/Reservation: Meshed Network Case 148
3.3.1.2 Per-VNET Bandwidth Allocation/Reservation: Sparse Network Case 150
3.3.2 Per-Flow Bandwidth Allocation, Protection, and Reservation 152
3.3.2.1 Per-Flow Bandwidth Allocation/Reservation: Meshed Network Case 152
3.3.2.2 Per-Flow Bandwidth Allocation/Reservation: Sparse Network Case 155
3.4 Queuing Mechanisms 156
3.5 Internetwork QoS Resource Management 157
3.6 Modeling of TQO Methods 159
3.6.1 Performance of Bandwidth Reservation Methods 159
3.6.2 Per-VNET vs Per-Flow Bandwidth Allocation 161
3.6.3 Single-Area Flat Topology vs Multiarea Two-Level Hierarchical Flat Topology 162
3.6.4 Need for MPLS and DiffServ 165
3.7 Summary and Conclusions 167
3.8 Applicability of Requirements 168
Chapter 4 Routing Table Management Methods and Requirements 170
4.1 Introduction 170
4.2 Routing Table Management for IP-Based Networks 173
4.3 Routing Table Management for ATM-Based Networks 179
4.4 Routing Table Management for TDM-Based Networks 181
4.5 Signaling and Information Exchange Requirements 183
4.5.1 Call/Session Routing (Number Translation to Routing Address) Information-Exchange Parameters 185
4.5.2 Connection Routing Information-Exchange Parameters 186
4.5.3 QoS Resource Management Information-Exchange Parameters 187
4.5.4 Routing Table Management Information-Exchange Parameters 188
4.5.5 Harmonization of Information-Exchange Standards 190
4.5.6 Open Application Programming Interface (API) 190
4.6 Examples of Call/Session Setups 191
4.6.1 Time-Dependent Routing Call/Session Setup 191
4.6.2 Distributed Connection-by-Connection State-Dependent Routing (DC-SDR) Call/Session Setup 192
4.6.3 Centralized Periodic State-Dependent Routing (CP-SDR) Call/Session Setup 193
4.6.4 Event-Dependent Routing Call/Session Setup 194
4.7 Examples of Internetwork Routing 195
4.7.1 Internetwork E Uses a Mixed Path Selection Method 196
4.7.2 Internetwork E Uses a Single Path Selection Method 198
4.8 Modeling of TQO Methods 198
4.9 Summary and Conclusions 205
4.10 Applicability of Requirements 205
Chapter 5 Traffic Engineering and QoS Optimization of GMPLS-Based Multilayer Dynamic Routing Networks 208
5.1 Introduction 208
5.2 GMPLS-Based Dynamic Transport Routing Principles 210
5.3 GMPLS-Based Dynamic Transport Routing Examples 215
5.3.1 Seasonal Traffic Variations Example 217
5.3.2 Week-to-Week Traffic Variations Example 219
5.3.3 Daily Traffic Variations Example 219
5.3.4 Real-Time Traffic Variations Example 222
5.4 Distributed Real-Time Dynamic Transport Routing Algorithm Design 226
5.4.1 Estimate Traffic 228
5.4.2 Size Layer 3 MPLS LSP VNET Capacity 228
5.4.3 Reallocate Access Capacity between Overloaded and Underloaded Traffic Routers 228
5.4.4 Compute Diverse Capacity 229
5.4.5 Size Layer 2 ALL and BLL Capacity 229
5.4.6 Reroute ALL and BLL Capacity 230
5.5 Reliable Transport Network Design 231
5.5.1 Transport Link Design Models 233
5.5.2 Node Design Models 235
5.6 Modeling of TQO Methods 236
5.6.1 GMPLS-Based Dynamic Transport Routing Capacity Design 237
5.6.2 Performance for Network Failures 238
5.6.3 Performance for General Traffic Overloads 240
5.6.4 Performance for Unexpected Overloads 241
5.6.5 Performance for Peak-Day Traffic Loads 242
5.7 Summary and Conclusions 242
5.8 Applicability of Requirements 243
Chapter 6 Optimization Methods for Routing Design and Capacity Management 246
6.1 Introduction 246
6.2 Routing Design and Optimization Methods 248
6.2.1 Discrete Event Simulation Models 249
6.2.2 Shortest Path Routing Design Models 252
6.2.3 Hierarchical Routing Design Models 252
6.3 Capacity Design and Optimization Methods 253
6.3.1 Capacity Design Cost Impacts for Traffic Load Variations 254
6.3.1.1 Impacts of Within-the-Hour Minute-to-Minute Traffic Variations 255
6.3.1.2 Impacts of Hour-to-Hour Traffic Variations 256
6.3.1.3 Impacts of Day-to-Day Traffic Variations 258
6.3.1.4 Impacts of Week-to-Week Traffic Variations 259
6.3.2 Capacity Design and Optimization Models 262
6.3.2.1 Discrete Event Flow Optimization Models 263
6.3.2.2 Discussion of DEFO Model 266
6.3.2.3 Example Application of DEFO Model 269
6.3.2.4 Traffic Load Flow Optimization Models 271
6.3.2.5 Link Flow Optimization Model 273
6.3.2.6 Virtual Trunk Flow Optimization Models 275
6.3.2.7 Dynamic Transport Routing Capacity Design Models 277
6.4 Modeling of TQO Methods 278
6.4.1 Per-VNET vs Per-Flow Network Design 279
6.4.2 Integrated vs Separate Voice/ISDN and Data Network Designs 279
6.4.3 Multilink vs Two-Link Network Design 285
6.4.4 Single-Area Flat vs Two-Level Hierarchical Network Design 285
6.4.5 EDR vs SDR Network Design 287
6.4.6 Dynamic Transport Routing vs Fixed Transport Routing Network Design 289
6.5 Summary and Conclusions 291
6.6 Applicability of Requirements 291
Chapter 7 Traffic Engineering and QoS Optimization Operational Requirements 294
7.1 Introduction 294
7.2 Traffic Management 297
7.2.1 Real-Time Performance Monitoring 297
7.2.2 Network Control 299
7.2.3 Work Center Functions 301
7.2.3.1 Automatic Controls 301
7.2.3.2 Code Controls 301
7.2.3.3 Reroute Controls 301
7.2.3.4 Peak-Day Control 302
7.2.4 Traffic Management on Peak Days 302
7.2.5 Interfaces to Other Work Centers 302
7.3 Capacity Management: Forecasting 303
7.3.1 Load Forecasting 303
7.3.1.1 Configuration Database Functions 303
7.3.1.2 Load Aggregation, Basing, and Projection Functions 304
7.3.1.3 Load Adjustment Cycle and View of Business Adjustment Cycle 304
7.3.2 Network Design 305
7.3.3 Work Center Functions 305
7.3.4 Interfaces to Other Work Centers 306
7.4 Capacity Management: Daily and Weekly Performance Monitoring 306
7.4.1 Daily Congestion Analysis Functions 306
7.4.2 Study-Week Congestion Analysis Functions 307
7.4.3 Study-Period Congestion Analysis Functions 307
7.5 Capacity Management: Short-Term Network Adjustment 307
7.5.1 Network Design Functions 307
7.5.2 Work Center Functions 308
7.5.3 Interfaces to Other Work Centers 308
7.6 Comparison of Off-Line (FXR/TDR) versus On-Line (SDR/EDR) TQO Methods 309
7.7 MPLS Operations Architecture Example 309
7.7.1 Connectivity to Managed Assets 311
7.7.2 Modeling of VPN Topologies 311
7.7.3 Fault Management 311
7.7.4 Performance Management 313
7.7.5 MPLS MIB Architecture 313
7.7.6 MPLS OAM Operational Experience 314
7.8 Summary and Conclusions 317
7.9 Applicability of Requirements 317
Chapter 8 Case Studies 1: Traffic Engineering and QoS Optimization for Operational Integrated Voice/Data Dynamic Routing Networks 320
8.1 Introduction 320
8.2 Case Study: TQO Protocol Design of Circuit-Switched Integrated Voice/Data Dynamic Routing Network 322
8.2.1 Principles of TQO Protocol Design for Integrated Voice/Data Dynamic Routing Networks 323
8.2.1.1 Class-of-Service Routing 323
8.2.1.2 Connection Admission Control (CAC), Source-Based Path Selection, Crankback 325
8.2.1.3 Load State Mapping, Bandwidth Reservation 327
8.2.1.4 Dynamic Connection Routing, Priority Routing 331
8.2.1.5 Meet Performance Objectives for Integrated COSs 333
8.2.2 Optimization of TQO Protocol 335
8.3 Case Study: TQO Protocol Design of Circuit-Switched, Internetwork, Integrated Voice/Data Dynamic Routing Networks 339
8.4 Case Studies: Examples of Alternate Routing Contributing to Network Congestion 347
8.5 Applicability of Requirements 349
Chapter 9 Case Studies 2: Traffic Engineering and QoS Optimization for Operational Integrated Voice/Data Dynamic Routing Networks 350
9.1 Introduction 350
9.2 Case Study: TQO Protocol Design of MPLS/GMPLS-Based IntegratedVoice/Data Dynamic Routing Network 352
9.3 Optimization of TQO Path Selection Protocol 354
9.4 Optimization of TQO Bandwidth Management Protocol 362
9.4.1 TQO Bandwidth Management Protocol Options 362
9.4.1.1 Option A (Direct Coordination): MSE CAC, DSTE/MAR, DiffServ/Five Queues 363
9.4.1.2 Option B (Indirect Coordination): GW CAC, DSTE/MAM, DiffServ/Five Queues 366
9.4.1.3 Option C (Indirect Coordination): GW CAC, No DSTE, DiffServ/Three Queues 366
9.4.1.4 Option D (No Coordination): No CAC, No DSTE, DiffServ/Three Queues 367
9.4.1.5 Option E (No Coordination): No CAC, No DSTE, No DiffServ/One Queue 367
9.4.2 Traffic, Network Design, and Simulation Model Description 368
9.4.2.1 Traffic Model Description 368
9.4.2.2 Network Design Model Description 370
9.4.2.3 Simulation Model Description 374
9.5 Modeling Results 382
9.6 Summary and Conclusions 392
9.7 Applicability of Requirements 397
Chapter 10 Summary, Conclusions, and Generic Traffic Engineering and QoS Optimization Requirements 400
10.1 Introduction 400
10.2 TQO Modeling and Analysis 401
10.3 Summary and Conclusions Reached 403
10.3.1 Chapter 1: Summary and Conclusions on TQO Models 404
10.3.2 Chapter 2: Summary and Conclusions on Call/Session Routing and Connections Routing Methods 404
10.3.3 Chapter 3: Summary and Conclusions on TQO Protocol Design for MPLS-Based Dynamic Routing Networks 406
10.3.4 Chapter 4: Summary and Conclusions on Routing Table Management Methods and Requirements 407
10.3.5 Chapter 5: Summary and Conclusions on TQO Protocol Design of GMPLS-Based Multilayer Dynamic Routing Networks 409
10.3.6 Chapter 6: Summary and Conclusions on Optimization Methods for Routing Design and Capacity Management 410
10.3.7 Chapter 7: Summary and Conclusions on TQO Operational Requirements 411
10.3.8 Chapters 8 and 9: Summary and Conclusions on Case Studies of TQO for Operational Integrated Voice/Data Dynamic Routing Networks 412
10.4 GTQO Protocol for MPLS/GMPLS-Based Integrated Voice/Data Dynamic Routing Networks 414
10.4.1 GTQO Protocol Requirements 414
10.4.2 GTQO Capabilities to Meet Requirements 415
10.4.3 GTQO Protocol Description 418
10.5 Comparative Analysis of GTQO Protocol Model and Alternative Models 422
10.5.1 Distributed TQO Approaches 424
10.5.1.1 Distributed VNET-Based TQO Approaches with CAC 424
10.5.1.2 Flow-Aware Networking (Distributed TQO Approach without CAC) 425
10.5.2 Centralized TQO Approaches 425
10.5.2.1 TQO Processor (TQOP) 425
10.5.2.2 Resource and Admission Control Function (RACF) 426
10.5.2.3 Intelligent Routing Service Control Point (IRSCP) 426
10.5.2.4 DiffServ Bandwidth Broker 427
10.5.2.5 Network-Aware Resource Broker (NARB) 427
10.5.3 Competitive and Cooperative Game Theoretic Models 427
10.6 Needed Standards Extensions and Technologies to Meet GTQO Protocol Requirements 429
10.6.1 DiffServ-Aware MPLS Traffic Engineering (DSTE) 431
10.6.2 Path Computation Element (PCE) 431
10.6.3 RSVP Aggregation Extensions over DSTE Tunnels 432
10.6.4 Header Compression over MPLS 433
10.6.5 QoS Signaling Protocol 434
10.6.6 Crankback Routing for MPLS LSP Setup or Modification 435
10.6.7 OSPF Congestion Control 436
10.6.8 PseudoWire 436
10.6.9 Session Initiation Protocol (SIP) 436
10.6.10 IP Multimedia Subsystem (IMS) 437
10.6.11 Broadband Remote Access Server (BRAS) 437
10.6.12 Dynamic Quality of Service (DQOS) 437
10.6.13 Session Border Controller (SBC) 437
10.7 Benefits of GTQO Protocol for MPLS/GMPLS-Based Dynamic Routing Networks 438
10.8 Applicability of Requirements 438
Appendix A Traffic Engineering and QoS Optimization Technology Overview 440
A.1 Introduction 440
A.2 Multiprotocol Label Switching (MPLS) 440
A.3 Generalized Multiprotocol Label Switching (GMPLS) 444
A.4 QoS Mechanisms 447
A.4.1 Traffic Shaping and Policing Algorithms 447
A.4.1.1 Leaky-Bucket Algorithm 448
A.4.1.2 Token-Bucket Algorithm 449
A.4.2 Queue Management and Scheduling 450
A.5 Integrated Services (IntServ) 452
A.6 Resource Reservation Protocol (RSVP) 453
A.7 Differentiated Services (DiffServ) 454
A.8 MPLS-Based QoS Mechanisms 458
Glossary 460
References and Bibliography 470
Index 486

Erscheint lt. Verlag 3.11.2006
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Netzwerke
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
ISBN-10 0-08-046605-2 / 0080466052
ISBN-13 978-0-08-046605-7 / 9780080466057
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 3,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
das Praxisbuch für Administratoren und DevOps-Teams

von Michael Kofler

eBook Download (2023)
Rheinwerk Computing (Verlag)
39,90
Das umfassende Handbuch

von Martin Linten; Axel Schemberg; Kai Surendorf

eBook Download (2023)
Rheinwerk Computing (Verlag)
29,90
Von den Grundlagen zur Funktion und Anwendung

von Rüdiger Schreiner; Oliver P. Waldhorst

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99