Systematic Modeling and Analysis of Telecom Frontends and their Building Blocks (eBook)
XX, 230 Seiten
Springer US (Verlag)
978-1-4020-3174-8 (ISBN)
Foreword. Contributing Authors. Contents. Symbols and Abbreviations. 1 Introduction. 1.1 Structured analysis, a key to successful design. 1.1.1 Electronics, a competitive market. 1.1.2 Analog design: A potential bottleneck. 1.1.3 Structured analog design. 1.1.4 Structured analysis. 1.2 This work. 1.2.1 Main contributions. 1.2.2 Math, it’s a language. 1.3 Outline of this book. 2 Modeling and analysis of telecom frontends: basic concepts. 2.1 Models, modeling and analysis. 2.1.1 Models: what you want or what you have. 2.1.2 Good models. 2.1.3 The importance of good models in top-down design. 2.1.4 Modeling languages. 2.1.5 Modeling and analysis: model creation, transformation and interpretation. 2.2 Good models for telecommunication frontends: Architectures and their behavioral properties. 2.2.1 Frontend architectures and their building blocks. 2.2.2 Properties of frontend building block behavior. 2.3 Conclusions. 3 A framework for frequency-domain analysis of linear periodically timevarying Systems. 3.1 The story behind the math. 3.1.1 What’s of interest: A designer’s point of view. 3.1.2 Using harmonic transfer matrices to characterize LPTV behavior. 3.1.3 LPTV behavior and circuit small-signal analysis. 3.2 Prior art. 3.2.1 Floquet theory. 3.2.2 Lifting. 3.2.3 Frequency-domain approaches. 3.2.4 Contributions of this work. 3.3 Laplace-domain modeling of LPTV systems using Harmonic Transfer Matrices. 3.3.1 LPTV systems: implications of linearity and periodicity. 3.3.2 Linear periodically modulated signal models. 3.3.3 Harmonic transfer matrices: capturing transfer of signal content between carrier waves. 3.3.4 Structural properties of HTMs. 3.3.5 On the ¥-dimensional nature of HTMs. 3.3.6 Matrix-based descriptions for arbitrary LTV behavior. 3.4 LPTV system manipulation using HTMs. 3.4.1 HTMs of elementary systems. 3.4.2 HTMs of LPTV systems connected in parallel or in series. 3.4.3 Feedback systems and HTM inversions. 3.4.4 Relating HTMs to state-space representations. 3.5 LPTV system analysis using HTMs. 3.5.1 Multi-tone analysis. 3.5.2 Stability analysis. 3.5.3 Noise analysis. 3.6 Conclusions and directions for further research. 4 Applications of LPTV system analysis using harmonic transfer matrices. 4.1 HTMs in a nutshell. 4.2 Phase-Locked Loop analysis. 4.2.1 PLL architectures and PLL building blocks. 4.2.2 Prior art. 4.2.3 Signal phases and phase-modulated signal models. 4.2.4 HTM-based PLL building block models. 4.2.5 PLL closed-loop input-output HTM. 4.2.6 Example 1: PLL with sampling PFD. 4.2.7 Example 2: PLL with mixing PFD. 4.2.8 Conclusions. 4.3 Automated symbolic LPTV system analysis. 4.3.1 Prior art. 4.3.2 Symbolic LPTV system analysis: outlining the flow. 4.3.3 Input model construction. 4.3.4 Data structures. 4.3.5 Computational flow of the SymbolicHTM algorithm. 4.3.6 SymbolicHTM: advantages and limitations. 4.3.7 Application 1: linear downconversion mixer. 4.3.8 Application 2: Receiver stage with feedback across the mixing element. 4.4 Conclusions and directions for further research. 5 Modeling oscillator dynamic behavior. 5.1 The story behind the math. 5.1.1 Earth: a big oscillator. 5.1.2 Unperturbed system behavior: neglecting small forces. 5.1.3 Perturbed system behavior: changes in the earth’s orbit. 5.1.4 Averaging: focusing on what’s important. 5.1.5 How does electronic oscillator dynamics fit in?. 5.1.6 Modeling oscillator behavior. 5.2 Prior art. 5.2.1 General theory. 5.2.2 Phase noise analysis. 5.2.3 Numerical simulation. 5.2.4 Contributions of this work. 5.3 Oscillator circuit equations. 5.3.1 Normalizing the oscillator circuit equations. 5.3.2 Partitioning the normalized circuit equations. 5.4 Characterizing the oscillator’s unperturbed core. 5.5 Oscillator perturbation analysis. 5.5.1 Components of an oscillator’s perturbed behavior. 5.5.2 Motion xs _ t_ p_ t_ _over the manifold M . 5.5.3 In summary. 5.6 Averaging. 5.7 Oscillator phase (noise) analysis. 5.7.1 Capturing oscillator phase behavior. 5.7.2 Practical application: oscillator injection locking. 5.7.3 Averaging in the presence of random perturbations. 5.7.4 Practical application: computing oscillator phase noise spectra. 5.8 Harmonic oscillator behavioral modeling. 5.8.1 Model extraction theory. 5.8.2 Numerical computations. 5.8.3 Experimental results. 5.9 Conclusions and directions for further research. 6 Conclusions. 6.1 Main achievements. 6.1.1 HTM-based LPTV system analysis. 6.1.2 Modeling oscillator dynamic behavior. 6.2 Leads for further work. A HTM norms and the comparison of HTMs. A.1 Operator norms and the comparison of operators. A.2 Selecting the set of test inputs. A.3 Expressing LPTV operator norms in terms of the corresponding HTM elements. A.4 Conclusions. B The Sherman-Morisson-Woodbury formula. C HTM elements of the linear downconversion mixer. D Oscillator dynamics: analysis of the deviation from the attracting manifold. D.1 Components of the deviation Dx_ t_ . D.2 Behavior of Dx2 _ t_ . An expression for Dx2 _ t_ . Boundedness of Dx2 _ t_ . D.3 The behavior of Dx3 _ t_ . D.4 Conclusions. E Analysis of a harmonic oscillator. E.1 Determining the oscillator’s averaged dynamics. E.2 Phase behavior near operating point. E.3 Conclusions. Bibliography.
Erscheint lt. Verlag | 24.10.2005 |
---|---|
Reihe/Serie | The Springer International Series in Engineering and Computer Science | The Springer International Series in Engineering and Computer Science |
Zusatzinfo | XX, 230 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Technik ► Elektrotechnik / Energietechnik |
Schlagworte | Analog Design • Communication • Computer-Aided Design (CAD) • harmonic oscillators • Integrated circuit • oscillator phase noise • phase-locked loops • SECS • signal analysis • Symbol • System Analysis • telecommunication frontends • The Kluwer International Series in Engineering and Computer • The Kluwer International Series in Engineering and Computer Science |
ISBN-10 | 1-4020-3174-2 / 1402031742 |
ISBN-13 | 978-1-4020-3174-8 / 9781402031748 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich