The American Railway, its Construction, Development, Manage - Theodore Voorhees -  Bogart Thomas Curtis Clarke

The American Railway, its Construction, Development, Manage - Theodore Voorhees (eBook)

eBook Download: EPUB
2017 | 1. Auflage
770 Seiten
anboco (Verlag)
978-3-7364-2002-1 (ISBN)
Systemvoraussetzungen
0,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The railroads of the United States, now aggregating a hundred and fifty thousand miles and having several hundred different managements, are frequently spoken of comprehensively as the railroad system of the country, as though they constituted a unity in fact, and might be regarded and dealt with as an entirety, by their patrons and by the public authorities, whenever the conveniences they are expected to supply, or the conduct of managers and agents, come in question. So far, however, is this from being the case, that it would be impossible to name any other industrial interest where the diversities are so obvious and the want of unity so conspicuous and so important. The diversities date from the very origin of the roads; they have not come into existence under the same laws nor subject to the same control. It was accepted as an undoubted truth in constitutional law from the first that the authority for the construction of railroads within a State must come from the State itself, which alone could empower the promoters to appropriate lands by adversary proceedings for the purpose. The grant of corporate power must also come from[xxii] the State, or, at least, have State recognition and sanction; and where the proposed road was to cross a State boundary, the necessary corporate authority must be given by every State through or into which the road was to run. It was conceded that the delegated powers of the General Government did not comprehend the granting of charters for the construction of these roads within the States, and even in the Territories charters were granted by the local legislatures. The case of the transcontinental roads was clearly exceptional; they were to be constructed in large part over the public domain, and subsidies were to be granted by Congress for the purpose.

 

 

THE BUILDING OF A RAILWAY.


By THOMAS CURTIS CLARKE.

Roman Tramways of Stone—First Use of Iron Rails—The Modern Railway created by Stephenson's "Rocket" in 1830—Early American Locomotives—Key to the Evolution of the American Railway—Invention of the Swivelling Truck, Equalizing Beams, and the Switchback—Locating a Road—Work of the Surveying Party—Making the Road-bed—How Tunnels are Avoided—More than Three Thousand Bridges in the United States—Old Wooden Structures—The Howe Truss—The Use of Iron—Viaducts of Steel—The American System of Laying Bridge Foundations under Water—Origin of the Cantilever—Laying the Track—How it is Kept in Repair—Premiums for Section Bosses—Number of Railway Employees in the United States—Rapid Railway Construction—Radical Changes which the Railway will Effect.

 

 

Railways have been known since the days of the Romans. Their tracks were made of two lines of cut stones. Iron rails took their place about one hundred and fifty years ago, when the use of that metal became extended. These roads were called tram-roads, and were used to carry coal from the mines to the places of shipment. They were few in number and attracted little attention.

The modern railway was created by the Stephensons in 1830, when they built the locomotive "Rocket." The development of the railway since is due to the development of the locomotive. Civil engineering has done much, but mechanical engineering has done more.

The invention of the steam-engine by James Watt, in 1773, attracted the attention of advanced thinkers to a possible steam locomotive. Erasmus Darwin, in a poem published in 1781, made this remarkable prediction:

"Soon shall thy arm, unconquered steam! afar

Drag the slow barge, or drive the rapid car."

First Locomotive.

The first locomotive of which we have any certain record was invented, and put in operation on a model circular railway in London, in 1804, by Richard Trevithick, an erratic genius, who invented many things but perfected few. His locomotive could not make steam, and therefore could neither go fast nor draw a heavy load. This was the fault of all its successors, until the competitive trial of locomotives on the Liverpool and Manchester Railway, in 1829. The Stephensons, father and son, had invented the steam blast, which, by constantly blowing the fire, enabled the "Rocket," with its tubular boiler, to make steam enough to draw ten passenger cars, at the rate of thirty-five miles an hour.

Then was born the modern giant, and so recent is the date of his birth that one of the unsuccessful competitors at that memorable trial, Captain John Ericsson, was until the present year (1889) living and actively working in New York. Another engineer, Horatio Allen, who drove the first locomotive on the first trip ever made in the United States, in 1831, still lives, a hale and hearty old man, near New York.

The earlier locomotives of this country, modelled after the "Rocket," weighed five or six tons, and could draw, on a level, about 40 tons. After the American improvements, which we shall describe, were made, our engines weighed 25 tons, and could draw, on a level, some sixty loaded freight cars, weighing 1,200 tons. This was a wonderful advance, but now we have the "Consolidation" locomotive, weighing 50 tons, and able to draw, on a level, a little over 2,400 tons.

And this is not the end. Still heavier and more powerful engines are being designed and built, but the limit of the strength of the track, according to its present forms, has nearly been reached. It is very certain we have not reached the limit of the size and power of engines, or the strength of the track that can be devised.

After the success of the "Rocket," and of the Liverpool and Manchester Railway, the authority of George Stephenson and his son Robert became absolute and unquestioned upon all subjects of railway engineering. Their locomotives had very little side play to their wheels, and could not go around sharp curves. They accordingly preferred to make their lines as straight as possible, and were willing to spend vast sums to get easy grades. Their lines were taken as models and imitated by other engineers. All lines in England were made with easy grades and gentle curves. Monumental bridges, lofty stone viaducts, and deep cuts or tunnels at every hill marked this stage of railway construction in England, which was imitated on the European lines.

Locomotive of To-day.

As it was with the railway, so it was with the locomotive. The Stephenson type, once fixed, has remained unchanged (in Europe), except in detail, to the present day. European locomotives have increased in weight and power, and in perfection of material and workmanship, but the general features are those of the locomotives built by the great firm of George Stephenson & Son, before 1840.

When we come to the United States we find an entirely different state of things. The key to the evolution of the American railway is the contempt for authority displayed by our engineers, and the untrammelled way in which they invented and applied whatever they thought would answer the best purpose, regardless of precedent. When we began to build our railways, in 1831, we followed English patterns for a short time. Our engineers soon saw that unless vital changes were made our money would not hold out, and our railway system would be very short. Necessity truly became the mother of invention.

The first, and most far-reaching, invention was that of the swivelling truck, which, placed under the front end of an engine, enables it to run around curves of almost any radius. This enabled us to build much less expensive lines than those of England, for we could now curve around and avoid hills and other obstacles at will. The illustration opposite shows a railroad curving around a mountain and supported by a retaining wall, instead of piercing through the mountain with a tunnel, as would have been necessary but for the swivelling truck. The swivelling truck was first suggested by Horatio Allen, for the South Carolina Railway, in 1831; but the first practical use of it was made on the Mohawk and Hudson Railroad, in the same year. It is said to have been invented by John B. Jervis, Chief Engineer of that road.

The next improvement was the invention of the equalizing beams or levers, by which the weight of the engine is always borne by three out of four or more driving-wheels. They act like a three-legged stool, which can always be set level on any irregular spot. The original imported English locomotives could not be kept on the rails of rough tracks. The same experience obtained in Canada when the Grand Trunk Railway was opened, in 1854–55. The locomotives of English pattern constantly ran off the track; those of American pattern hardly ever did so. Finally, all their locomotives were changed by having swivelling trucks put under their forward ends, and no more trouble occurred. The equalizing levers were patented in 1838, by Joseph Harrison, Jr., of Philadelphia.


Alpine Pass. Avoidance of a Tunnel.

These two improvements, which are absolutely essential to the success of railways in new countries, and have been adopted in Canada, Australia, Mexico, and South America,[1] to the exclusion of English patterns, are also of great value on the smoothest and best possible tracks. The flexibility of the American machine increases its adhesion and enables it to draw greater loads than its English rival. The same flexibility equalizes its pressure on the track, prevents shocks and blows, and enables it to keep out of the hospital and run more miles in a year than an English locomotive.[2]

A Sharp Curve—Manhattan Elevated Railway, 110th Street, New York.

Equally valuable improvements were made in cars, both for passengers and freight. Instead of the four-wheeled English car, which on a rough track dances along on three wheels, we owe to Ross Winans, of Baltimore, the application of a pair of four-wheeled swivelling trucks, one under each end of the car, thus enabling it to accommodate itself to the inequalities of a rough track and to follow its locomotive around the sharpest curves. There are, on our main lines, curves of less than 300 feet radius, while, on the Manhattan Elevated, the largest passenger traffic in the world is conducted around curves of less than 100 feet radius. There are few curves of less than 1,000 feet radius on European railways.

A Steep Grade on a Mountain Railroad.

The climbing capabilities of a locomotive upon smooth rails were not known until, in 1852, Mr. B. H. Latrobe, Chief Engineer of the Baltimore and Ohio Railroad, tried a temporary zigzag gradient of 10 per cent.—that is 10 feet rise in 100 feet length, or 528 feet per mile—over a hill about two miles long, through which the Kingwood Tunnel was being excavated. A locomotive weighing 28 tons on its drivers took one car weighing 15 tons over this line in safety. It was worked for passenger traffic for six months. This daring feat has never been equalled. Trains go over 4 per cent. gradients on the Colorado system, and there is one short line, used to bring ore to the Pueblo furnaces, which is worked by locomotives over a 7 per cent. grade. These are believed to be the steepest grades worked by ordinary locomotives on smooth rails.

Another American invention is the switchback. By this plan the length of line required to ease the gradient is...

Erscheint lt. Verlag 16.6.2017
Sprache englisch
Themenwelt Technik Architektur
ISBN-10 3-7364-2002-1 / 3736420021
ISBN-13 978-3-7364-2002-1 / 9783736420021
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 15,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Handreichung für die behördliche Praxis

von Moritz Wild

eBook Download (2024)
Springer Vieweg (Verlag)
54,99
Strategien und Best Practices für die beschleunigte Transformation …

von Martin Pauli

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
9,99