Cognitive Analytics and Reinforcement Learning -

Cognitive Analytics and Reinforcement Learning (eBook)

Theories, Techniques and Applications
eBook Download: EPUB
2024 | 1. Auflage
384 Seiten
Wiley (Verlag)
978-1-394-21404-4 (ISBN)
Systemvoraussetzungen
168,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
COGNITIVE ANALYTICS AND REINFORCEMENT LEARNING

The combination of cognitive analytics and reinforcement learning is a transformational force in the field of modern technological breakthroughs, reshaping the decision-making, problem-solving, and innovation landscape; this book offers an examination of the profound overlap between these two fields and illuminates its significant consequences for business, academia, and research.

Cognitive analytics and reinforcement learning are pivotal branches of artificial intelligence. They have garnered increased attention in the research field and industry domain on how humans perceive, interpret, and respond to information. Cognitive science allows us to understand data, mimic human cognitive processes, and make informed decisions to identify patterns and adapt to dynamic situations. The process enhances the capabilities of various applications.

Readers will uncover the latest advancements in AI and machine learning, gaining valuable insights into how these technologies are revolutionizing various industries, including transforming healthcare by enabling smarter diagnosis and treatment decisions, enhancing the efficiency of smart cities through dynamic decision control, optimizing debt collection strategies, predicting optimal moves in complex scenarios like chess, and much more. With a focus on bridging the gap between theory and practice, this book serves as an invaluable resource for researchers and industry professionals seeking to leverage cognitive analytics and reinforcement learning to drive innovation and solve complex problems.

The book's real strength lies in bridging the gap between theoretical knowledge and practical implementation. It offers a rich tapestry of use cases and examples. Whether you are a student looking to gain a deeper understanding of these cutting-edge technologies, an AI practitioner seeking innovative solutions for your projects, or an industry leader interested in the strategic applications of AI, this book offers a treasure trove of insights and knowledge to help you navigate the complex and exciting world of cognitive analytics and reinforcement learning.

Audience

The book caters to a diverse audience that spans academic researchers, AI practitioners, data scientists, industry leaders, tech enthusiasts, and educators who associate with artificial intelligence, data analytics, and cognitive sciences.

Elakkiya R., PhD, is an assistant professor in the Department of Computer Science at the Birla Institute of Technology & Science in Dubai, UAE. She received a Ph.D. in 2018 and did her doctoral research in sign language recognition. Her research focuses on addressing trending issues in computer science, mathematics, and engineering. Along with publishing two books, 50 research articles, and three patents, she is an editor of the Information Engineering and Applied Computing journal. She received the Young Achiever Award in 2019.

Subramaniyaswamy V., PhD, is a professor at the School of Computing at SASTRA Deemed University in Tamilnadu, India. He received a Ph.D. from Anna University in 2013. His research areas include cognitive computing, reinforced learning, recommender systems, artificial intelligence, and the Internet of Things. He has published more than 200 research papers and book chapters in international journals and books.


COGNITIVE ANALYTICS AND REINFORCEMENT LEARNING The combination of cognitive analytics and reinforcement learning is a transformational force in the field of modern technological breakthroughs, reshaping the decision-making, problem-solving, and innovation landscape; this book offers an examination of the profound overlap between these two fields and illuminates its significant consequences for business, academia, and research. Cognitive analytics and reinforcement learning are pivotal branches of artificial intelligence. They have garnered increased attention in the research field and industry domain on how humans perceive, interpret, and respond to information. Cognitive science allows us to understand data, mimic human cognitive processes, and make informed decisions to identify patterns and adapt to dynamic situations. The process enhances the capabilities of various applications. Readers will uncover the latest advancements in AI and machine learning, gaining valuable insights into how these technologies are revolutionizing various industries, including transforming healthcare by enabling smarter diagnosis and treatment decisions, enhancing the efficiency of smart cities through dynamic decision control, optimizing debt collection strategies, predicting optimal moves in complex scenarios like chess, and much more. With a focus on bridging the gap between theory and practice, this book serves as an invaluable resource for researchers and industry professionals seeking to leverage cognitive analytics and reinforcement learning to drive innovation and solve complex problems. The book s real strength lies in bridging the gap between theoretical knowledge and practical implementation. It offers a rich tapestry of use cases and examples. Whether you are a student looking to gain a deeper understanding of these cutting-edge technologies, an AI practitioner seeking innovative solutions for your projects, or an industry leader interested in the strategic applications of AI, this book offers a treasure trove of insights and knowledge to help you navigate the complex and exciting world of cognitive analytics and reinforcement learning. Audience The book caters to a diverse audience that spans academic researchers, AI practitioners, data scientists, industry leaders, tech enthusiasts, and educators who associate with artificial intelligence, data analytics, and cognitive sciences.

1
Cognitive Analytics in Continual Learning: A New Frontier in Machine Learning Research


Renuga Devi T.1, Muthukumar K.2*, Sujatha M.1 and Ezhilarasie R.1

1School of Computing, SASTRA Deemed University, Thanjavur, India

2School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India

Abstract


The cognitive system that started with automation has now set its benchmark to reach human-centric intelligence. The slow adoption of cognitive systems is most likely due to its meticulous training process. With cognitive computing as its backbone nowadays, any data can be converted into an asset anytime and anywhere. The complexity of data and its abandonment nature demand the coexistence of many technologies to provide deep insights in a domain. A generic artificial intelligence system built on deep learning and natural language processing evolves into a personalized business partner and a life companion that continuously learns. Combining tremendous power, humanity’s relationship with technology has undergone incredible shifts. The adaptation and embracement have led to a higher level of intelligence augmentation, mainly in decision support and engagement systems, penetrating its need in various fields, especially in the healthcare industry, business-to-business, industrial marketing, autonomous driving, financial services, manufacturing sectors, and as a human assistant in day-to-day activities. The expensive and complex process of using cognitive systems to get complete resolutions for specific business segments on historical static data and dynamic real-time data should be addressed with Hadoop, Spark, NoSQL, and other technologies that are part of cognitive systems besides NLP, AI, and ML. This chapter begins with an understanding of different analytics and the need of the hour, then gradually penetrates to give insights into cognitive systems, design principles, and key characteristics of the system, dwelling in the backbone of cognitive systems and its different learning approaches with some prominent use cases.

Keywords: Cognitive computing, machine learning algorithms, natural language processing, artificial intelligence, cognitive analytics

1.1 Introduction


The cognitive age is a continuous trend of massive technological development. The driving force behind this trend is the developing field of cognitive technology, which consists of profoundly disruptive systems that interpret unstructured data, reason to generate hypotheses, learn from experience, and organically interact with humans. With this technology, the capacity to generate insight from all types of data will be critical to success in the cognitive age.

Cognitive computing is likely most notable for upending the conventional IT view that a technology’s worth reduces with time; because cognitive systems improve as they learn, they actually grow more useful. This trait makes cognitive technology very valuable for business, and many early adopters are capitalizing on the competitive edge it provides. The cognitive era has arrived, not just because technology has matured, but also because the phenomena of big data necessitate it. The goal of cognitive computing is to be able to solve some uncertain real-world issues comparable to those addressed by the human brain [1].

Since its inception in the 1950s, cognitive science has grown at a rapid pace. Furthermore, as a key component of cognitive science, cognitive computing has a significant influence on artificial intelligence and information technology [2]. Computing systems in the past could gather, transport, and store unstructured data, but they could not interpret it. Cognitive computing systems are intended to foster a better “symbiotic relationship” between humans and technology by replicating human reasoning and problem-solving. Cognitive computing simulates the human brain using computerized models. It is accomplished by the combination of the Von Neumann paradigm and neuromorphic computing, which combines analytic, iterative processes with extremely sophisticated logical and reasoning operations in a very short period of time while utilizing very little power.

The excitement around AI equipment has been dubbed a “renaissance of equipment,” as vendors race to manufacture space-explicit or exceptional job-at-hand explicit designs that can fundamentally scale and increase computing productivity [3]. Cognitive systems are probabilistic in nature that hold the capability to adapt and sense the unpredictability and complexity of unstructured input. They analyze that information, organize it, and explain what it means, as well as the reasons for their judgments [4]. Cognitive computing refers to technological platforms that combine reasoning, machine learning, natural language processing, vision, voice, and human computer interaction that replicates the human brain operation and aid in decision-making. The progression of cognitive thought evolves from pure descriptivism through past prediction to prescriptiveness, reflecting a journey from understanding to anticipation and active guidance.

1.2 Evolution of Data Analytics


As we go forward, the graph in Figure 1.1 shows us the benefits that each type of analytics provides.

a) Descriptive Analytics


Acquiring and evaluating facts to explain what has happened. The majority of business reports are descriptive in nature, which is capable of providing historical data summary or explaining differences from one another. Insights from past data are provided in detail by descriptive analytics via data aggregation and data mining but fail to explain the reason behind the insights.

Figure 1.1 Benefits of analytics (source: https://swifterm.com/the-difference-between-descriptive-diagnostic-predictive-and-cognitive-analytics/).

b) Diagnostic Analytics


Diagnostic analytics addresses the reason behind the inference and discovers answers to why questions. The data are compared with past data to identify why the particular situation has happened. This method of data evaluation is useful to uncover data anomalies, determine the relationships within the data, and detect patterns and trends in product market analysis. Some of the diagnostic analytics used by various business firms include data discovery, alarms, drill-down, correlation, drill-up, and data mining. In-depth analysis by experienced demand planners provides assistance for better decision choices. Diagnostic analytics is a reactive process; it helps us only to anticipate the possibility of continuation of the current situation even when used with forecasting.

c) Predictive Analytics


Predictive analytics forms a part of business intelligence that uses predictive and descriptive factors of the available data to forecast and identify the possibility of the occurrence of an unknown pattern in the near future. Predictive analytics is a subset of business intelligence that analyzes and predicts the possibility of an unknown future result using descriptive and predictive factors from the past. It combines analytical techniques, data mining strategies, predictive models, and forecasting methods to assess the possibility of risk and linkages in the current data to perform future predictions. At this point, you are more interested in why something happened than in what happened. It offers proactive market responses.

d) Prescriptive Analytics


Prescriptive analytics combines descriptive, predictive, and diagnostic analysis to create the possibility to make things happen. Beginning with descriptive analysis, which informed us about what has happened, the next stage was to do a diagnostic about why it happened and the next was predictive analysis to predict when it would happen. As a consequence, prescriptive analysis uses business principles and mathematical models on the data to infer future decisions/actions from the current data. Business firms can implement prescriptive analytics in day-to-day transactions only when analytics-driven culture is followed for the entire organization. Larger firms such as Amazon and McDonald’s employ prescriptive analytics to increase revenue and customer experience by increasing their demand planning.

e) Cognitive Analytics


A software that takes all data and analytics and also learns on its own without explicit human direction is cognitive analytics. To achieve this self-learning, cognitive analytics combines advanced technologies like Natural Language Processing (NLP), artificial intelligence algorithms, machine learning and deep learning, semantics, data mining, and emotional intelligence [5]. Using these techniques, the cognitive application would become smarter and repair itself.

Figure 1.2 Conceptual view of cognitive computing [6].

1.3 Conceptual View of Cognitive Systems


Internal components of the cognitive analytics engine are depicted in Figure 1.2 by the large rectangle. To represent and reason with information, many knowledge representation structures are required. A variety of machine learning methods and inference engines are also required. Domain cognitive models encapsulate domain-specific cognitive processes to facilitate cognitive style problem solving. The learning and adaptation component increases system performance by learning from prior encounters with users. In contrast to all...

Erscheint lt. Verlag 10.4.2024
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 1-394-21404-9 / 1394214049
ISBN-13 978-1-394-21404-4 / 9781394214044
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 8,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99