Advances in Carbon Dioxide Compression and Pipeline Transportation Processes (eBook)

eBook Download: PDF
2015 | 2015
XIII, 134 Seiten
Springer International Publishing (Verlag)
978-3-319-18404-3 (ISBN)

Lese- und Medienproben

Advances in Carbon Dioxide Compression and Pipeline Transportation Processes - Andrzej Witkowski, Andrzej Rusin, Mirosław Majkut, Sebastian Rulik, Katarzyna Stolecka
Systemvoraussetzungen
69,54 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Providing a comprehensive analysis of CO2 compression, transportation processes and safety issues for post combustion CO2 capture applications for a 900 MW pulverized hard coal-fired power plant, this book assesses techniques for boosting the pressure of CO2 to pipeline pressure values with a minimal amount of energy. Four different types of compressors are examined in detail: a conventional multistage centrifugal compressor, integrally geared centrifugal compressor, supersonic shock wave compressor, and pump machines. The study demonstrates that the total compression power is closely related to the thermodynamic process and is not determined by compressor efficiency alone. Another problem addressed is that of CO2 pipeline transport from the compressor outlet site to a disposal site under heat transfer conditions. The book also features an analysis of simulations and models that are used to determine the maximum safe pipeline distance to subsequent booster stations as a function of inlet pressure, ambient temperature, thickness of the thermal insulation and ground-level heat flux conditions. This book focuses on compression as well as transportation processes with particular emphasis on the safety risks related to the transport of CO2. The most important problem in terms of environmental protection is ensuring precise and reliable hazard identification. As hazards can only be managed effectively if they are properly identified, problems involving the discharge and atmospheric dispersion of CO2 are also discussed.



Andrzej S. WITKOWSKI is Professor of Mechanical Engineering at the Silesian Technical University of Technology in Gliwice, where he received his doctor and habilitated doctor degrees. He has more than 50 years of teaching, research, and consulting experience in compressors and fans, wind turbines, aerodynamics, experimental and fluid dynamics. Most of his research is focused on detailed understanding and modelling of the flow field in turbomachines. The specific areas include the rotor wake steady and unsteady flow field in a single-stage compressor, the rotor-stator interaction, and the rotor stall inception in the axial flow low-speed compressor stage. His experience covers a wide spectrum including experimental work, analytical and computational modelling, and improvement in compressor performance through loss correlations. He developed and equipped the axial flow compressor stage laboratory at the Technical University in Gliwice, which now comprises an axial flow low-speed compressor stage. This makes it possible to measure the unsteady flow field in the rotor blade-to-blade channels with the use of three different anemometer systems. He has been involved lately in the analysis of compression and transportation processes for post-combustion CO2 capture applications for pulverized coal-fired power plants. He has received numerous awards granted by the Polish Ministry of National Education.
This work is supported by the Polish National Centre of Research and Development in the framework of the Contract: Strategic Research Programme (Advanced Technologies for Energy Generation).

Andrzej S. WITKOWSKI is Professor of Mechanical Engineering at the Silesian Technical University of Technology in Gliwice, where he received his doctor and habilitated doctor degrees. He has more than 50 years of teaching, research, and consulting experience in compressors and fans, wind turbines, aerodynamics, experimental and fluid dynamics. Most of his research is focused on detailed understanding and modelling of the flow field in turbomachines. The specific areas include the rotor wake steady and unsteady flow field in a single-stage compressor, the rotor-stator interaction, and the rotor stall inception in the axial flow low-speed compressor stage. His experience covers a wide spectrum including experimental work, analytical and computational modelling, and improvement in compressor performance through loss correlations. He developed and equipped the axial flow compressor stage laboratory at the Technical University in Gliwice, which now comprises an axial flow low-speed compressor stage. This makes it possible to measure the unsteady flow field in the rotor blade-to-blade channels with the use of three different anemometer systems. He has been involved lately in the analysis of compression and transportation processes for post-combustion CO2 capture applications for pulverized coal-fired power plants. He has received numerous awards granted by the Polish Ministry of National Education. This work is supported by the Polish National Centre of Research and Development in the framework of the Contract: Strategic Research Programme (Advanced Technologies for Energy Generation).

Contents 6
Nomenclature 9
Abstract 12
1 General Introduction 13
References 15
2 General Physical Properties of CO2 in Compression and Transportation Processes 16
Abstract 16
2.1 Physical Properties of Carbon Dioxide 16
2.2 Effects of Impurities on the CO2 Phase Diagram 20
2.3 Establishing CO2 Pipeline Pressure 22
References 22
3 Compression and Pumping Technology Options 24
Abstract 24
3.1 Introduction 24
3.2 Thermodynamic Analysis 25
3.3 Boundary Conditions and Characteristics of the Compressing Process 26
3.3.1 Methods Used to Determine Compression Processes 26
3.3.2 Polytropic Process: Real Gas Behavior 27
3.3.3 Calculation Results 28
3.4 Compression Technology Options 28
3.4.1 Ordinary and Integrally Geared Centrifugal Compressors 28
3.4.2 Ramgen’s Supersonic Shock Wave Compressor 30
3.4.3 Compression and Pumping with Supercritical Liquefaction 31
3.5 Overview of CO2 Compression Strategies 32
3.5.1 In-line Multistage Centrifugal Compressors with Interstage Cooling 32
3.5.2 Multistage Centrifugal Integrally Geared Compressors 33
3.5.3 Advanced Supersonic Shock Wave Compressors 35
3.5.4 Compression and Pumping with Supercritical Liquefaction 36
3.5.5 Compression and Pumping with Subcritical Liquefaction 37
3.5.6 Compression and Refrigeration Pumping 38
3.5.7 Summary of Compression Options 42
3.6 Conclusions 44
References 45
4 Reference Options of the CO2 Compression Processes Available for Technological Concepts of a 900 MW Pulverized Coal-Fired Power Plant 47
Abstract 47
4.1 Introduction 48
4.2 Compression Processes Using Compressors Only 49
4.2.1 Ordinary Two-Shaft Multistage Centrifugal Compressor 49
4.2.2 Selection of IntersectionInterstage Coolers 54
4.2.2.1 General Introduction 54
4.2.2.2 Cooling Water Temperature 55
4.2.2.3 Pressure Drop 56
4.2.2.4 Calculation Results 56
4.2.3 Eight-Stage Integrally Geared Compressor with Seven Intercoolers 56
4.2.3.1 Introduction 56
4.2.3.2 Compressor Conception 58
4.2.3.3 Selection of Interstage Coolers 61
4.2.3.4 Intermediate CompressionPumping 64
4.3 Compression and Pumping 66
4.3.1 Introduction 66
4.3.2 Six-Stage Integrally Geared Centrifugal Compressor 67
4.3.3 Pumping Process 71
4.3.4 Summary of Compression Options 72
References 72
5 The Use of Waste Heat from the CO2 Compression Process 74
Abstract 74
5.1 Basic Assumptions and Subject of Analysis 74
5.2 Analysis of Heat Recovery from the Compression Process 75
5.3 8-Stage Integrally Geared CO2 Compressor with Heat Recovery 77
5.4 2-Stage Shock Wave Compressor with Heat Recovery 78
5.5 Conclusions 79
References 80
6 Analysis of Transportation Systems for CO2 Sequestration 81
Abstract 81
6.1 Introduction 82
6.2 CO2 Properties in Pipeline Transport 83
6.3 Pressure Loss Correlation 84
6.4 Results and Discussion 85
6.4.1 Comparison Between Adiabatic and Isothermal Transmission 85
6.4.1.1 Maximum Safe Transport Distance 85
6.4.1.2 Pipe Diameter Impact 87
6.4.2 Energy Balance with Surroundings 87
6.4.2.1 General Remarks 87
6.4.2.2 Choking Conditions 90
6.4.2.3 Impact of Ambient Temperature and of the Thermal Insulation Layer 90
6.5 Conclusions 99
References 100
7 Analysis of Risk Related to Carbon Dioxide Pipeline Transport 102
Abstract 102
7.1 Risk Definition 102
7.1.1 Risk Analysis 102
7.1.2 Risk Acceptability Criteria 105
7.2 Identification of Hazardous Scenarios 106
7.2.1 Hazards in CCS Technologies 106
7.2.2 Hazards Involved with Carbon Dioxide Storage 107
7.2.3 Hazards Involved with Carbon Dioxide Storage in Tanks 109
7.2.4 Hazards Involved with Carbon Dioxide Transport 111
7.3 Probability of Occurrence of Hazardous Scenarios 112
7.3.1 A Pipeline Failure Event Tree 112
7.3.2 Probability of Pipeline Damage Due to Corrosion 114
7.4 Assessment of Consequences of Damage to a Pipeline Transporting CO2 119
7.4.1 Analysis of Phenomena Occurring in a Damaged Pipeline 119
7.4.2 Carbon Dioxide Impact Consequences 123
7.4.3 Estimation of Zones with Elevated Concentrations of Carbon Dioxide 127
7.4.4 Hazard Zones Related to Carbon Dioxide Tanks 130
7.4.4.1 Analysis of the tank size impact 130
7.4.4.2 Analysis of the tank shape impact 132
7.4.4.3 Analysis of the impact of changes in the tank positioning 132
7.5 Estimation of Risk Posed by Carbon Dioxide Pipeline Transport 133
7.5.1 Individual Risk Estimation 133
7.5.2 Social Risk Estimation 134
7.6 Methods of Risk Reduction—Optimization of Safety Valves Spacing 138
References 140

Erscheint lt. Verlag 25.5.2015
Reihe/Serie SpringerBriefs in Applied Sciences and Technology
Zusatzinfo XIII, 134 p. 96 illus., 18 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Wirtschaft
Schlagworte 900 MW Pulverized hard Coal-fired Power plant • Compression Systems • Hazard Identifications • Pipeline Transport • Post-combustion CO2 Capture
ISBN-10 3-319-18404-0 / 3319184040
ISBN-13 978-3-319-18404-3 / 9783319184043
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99