Mixed Hodge Structures on Alexander Modules
Seiten
2024
American Mathematical Society (Verlag)
978-1-4704-6967-2 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-6967-2 (ISBN)
Motivated by the limit mixed Hodge structure on the Milnor fiber of a hypersurface singularity germ, we construct a natural mixed Hodge structure on the torsion part of the Alexander modules of a smooth connected complex algebraic variety.
The Memoirs of the AMS is devoted to the publication of new research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers of groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the American Mathematical Society. All papers are peer-reviewed.
The Memoirs of the AMS is devoted to the publication of new research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers of groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the American Mathematical Society. All papers are peer-reviewed.
Eva Elduque, University of Michigan, Ann Arbor, Michigan, and Universidad Autonoma de Madrid, Spain, Christian Geske, Northwestern University, Evanston, Illinois, Moises Herradon Cueto, Louisiana State University, Baton Rouge, Louisiana, Laurentiu G. Maxim, University of Wisconsin, Madison, Wisconsin, and Botong Wang, University of Wisconsin, Madison, Wisconsin.
1. Introduction
2. Preliminaries
3. Thickened complexes
4. Thickened complexes and mixed Hodge complexes
5. Mixed Hodge structures on Alexander modules
6. The geometric map is a morphism of MHS
7. The geometric map is an MHS morphism: Consequences
8. Semisimplicity for proper maps
9. Relation to the limit MHS
10. Examples and open questions
Erscheinungsdatum | 04.06.2024 |
---|---|
Reihe/Serie | Memoirs of the American Mathematical Society ; Volume: 296 Number: 1479 |
Verlagsort | Providence |
Sprache | englisch |
Maße | 178 x 254 mm |
Gewicht | 272 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 1-4704-6967-7 / 1470469677 |
ISBN-13 | 978-1-4704-6967-2 / 9781470469672 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
39,99 €