Mixed Hodge Structures on Alexander Modules - Eva Elduque, Christian Geske, Moises Herradon Cueto, Laurentiu G. Maxim, Botong Wang

Mixed Hodge Structures on Alexander Modules

Buch | Softcover
114 Seiten
2024
American Mathematical Society (Verlag)
978-1-4704-6967-2 (ISBN)
98,20 inkl. MwSt
Motivated by the limit mixed Hodge structure on the Milnor fiber of a hypersurface singularity germ, we construct a natural mixed Hodge structure on the torsion part of the Alexander modules of a smooth connected complex algebraic variety.
The Memoirs of the AMS is devoted to the publication of new research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers of groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the American Mathematical Society. All papers are peer-reviewed.

Eva Elduque, University of Michigan, Ann Arbor, Michigan, and Universidad Autonoma de Madrid, Spain, Christian Geske, Northwestern University, Evanston, Illinois, Moises Herradon Cueto, Louisiana State University, Baton Rouge, Louisiana, Laurentiu G. Maxim, University of Wisconsin, Madison, Wisconsin, and Botong Wang, University of Wisconsin, Madison, Wisconsin.

1. Introduction
2. Preliminaries
3. Thickened complexes
4. Thickened complexes and mixed Hodge complexes
5. Mixed Hodge structures on Alexander modules
6. The geometric map is a morphism of MHS
7. The geometric map is an MHS morphism: Consequences
8. Semisimplicity for proper maps
9. Relation to the limit MHS
10. Examples and open questions

Erscheinungsdatum
Reihe/Serie Memoirs of the American Mathematical Society ; Volume: 296 Number: 1479
Verlagsort Providence
Sprache englisch
Maße 178 x 254 mm
Gewicht 272 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 1-4704-6967-7 / 1470469677
ISBN-13 978-1-4704-6967-2 / 9781470469672
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich