Handbook of High -Temperature Superconductivity -

Handbook of High -Temperature Superconductivity (eBook)

Theory and Experiment

J. Robert Schrieffer (Herausgeber)

eBook Download: PDF
2007 | 2007
XXXIII, 627 Seiten
Springer New York (Verlag)
978-0-387-68734-6 (ISBN)
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Since the 1980s, a general theme in the study of high-temperature superconductors has been to test the BCS theory and its predictions against new data. At the same time, this process has engendered new physics, new materials, and new theoretical frameworks. Remarkable advances have occurred in sample quality and in single crystals, in hole and electron doping in the development of sister compounds with lower transition temperatures, and in instruments to probe structure and dynamics. Handbook of High-Temperature Superconductvity is a comprehensive and in-depth treatment of both experimental and theoretical methodologies by the the world's top leaders in the field. The Editor, Nobel Laureate J. Robert Schrieffer, and Associate Editor James S. Brooks, have produced a unified, coherent work providing a global view of high-temperature superconductivity covering the materials, the relationships with heavy-fermion and organic systems, and the many formidable challenges that remain. 


Since the 1980s, a general theme in the study of high-temperature superconductors has been to test the BCS theory and its predictions against new data. At the same time, this process has engendered new physics, new materials, and new theoretical frameworks. Remarkable advances have occurred in sample quality and in single crystals, in hole and electron doping in the development of sister compounds with lower transition temperatures, and in instruments to probe structure and dynamics. Handbook of High-Temperature Superconductvity is a comprehensive and in-depth treatment of both experimental and theoretical methodologies by the the world's top leaders in the field. The Editor, Nobel Laureate J. Robert Schrieffer, and Associate Editor James S. Brooks, have produced a unified, coherent work providing a global view of high-temperature superconductivity covering the materials, the relationships with heavy-fermion and organic systems, and the many formidable challenges that remain. 

Preface 6
Acknowledgments 10
Contents 11
List of Contributors 21
Credit Lines 23
Chapter 1 23
Chapter 2 23
Chapter 3 25
Chapter 4 26
Chapter 5 27
Chapter 6 28
Chapter 7 29
Chapter 8 29
Chapter 9 30
Chapter 10 30
Chapter 11 31
Chapter 12 31
Chapter 13 31
Chapter 14 32
Chapter 16 32
From Single- to Bipolarons with Jahn– Teller Character and Metallic Cluster- Stripes in Hole- Doped Cuprates 33
1.1. The Original Jahn–Teller Polaron Concept and Its Shortcomings 33
1.2. Recent Experiments Probing Delocalized Properties 34
1.3. Probing of Local Properties 36
1.4. The Intersite JT-Bipolaron Concept Derived from EXAFS, EPR, and Neutron Scattering 37
1.5. Two-Component Scenario 39
1.6. JT-Bipolarons as the Elementary Quasiparticles to Understand the Phase Diagram and Metallic Clusters or Stripes 41
1.7. Substantial Oxygen Isotope Effects 44
1.8. Concluding Remarks 49
Acknowledgment 49
Bibliography 49
Tunneling Measurements of the Cuprate Superconductors 51
2.1. Introduction 51
2.2. General Concepts 52
2.3. Means of Preparing Tunnel Junctions 64
2.4. p-Rings and 0 - p-Junctions 71
2.5. Tunneling Spectroscopy 76
2.6. Conclusions 107
Bibliography 107
Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron– Phonon Coupling in Cuprate Superconductors 119
3.1. Introduction 119
3.2. Angle-Resolved Photoemission Spectroscopy 120
3.3. Electronic Structures of High Temperature Superconductors 127
3.4. Electron- Phonon Coupling in High Temperature Superconductors 130
3.5. Summary 169
Acknowledgments 170
Bibliography 170
Microwave Electrodynamics of High Temperature Superconductors 177
4.1. Introduction 177
4.2. Electrodynamics of Superconductors 178
4.3. Experimental Techniques 188
4.4. Measurement of Surface Resistance Rs 195
4.5. Penetration Depth 198
4.6. Surface Resistance 211
4.7. Fluctuations 234
Acknowledgments 241
Bibliography 241
Magnetic Resonance Studies of High Temperature Superconductors 247
5.1. Introduction 247
5.2. Basic NMR Theory and Experiment 248
5.3. NMR in Normal State Metals 253
5.4. NMR in Conventional BCS Superconductors 255
5.5. The Cuprate Spin Hamiltonian 256
5.6. YBCO above Tc 258
5.7. YBCO Below TC: NMR Evidence About the Pairing State 268
5.8. LSCO 272
5.9. Brief Review of EPR 284
Acknowledgment 285
Bibliography 286
Neutron Scattering Studies of Antiferromagnetic Correlations in Cuprates 289
6.1. Introduction 289
6.2. Magnetic Excitations in Hole-Doped Superconductors 291
6.3. Antiferromagnetism in the Parent Insulators 296
6.4. Destruction of Antiferromagnetic Order by Hole Doping 304
6.5. Stripe Order and Other Competing States 306
6.6. Variation of Magnetic Correlations with Doping and Temperature in Cuprates 312
6.7. Effects of Perturbations on Magnetic Correlations 316
6.8. Electron-Doped Cuprates 318
6.9. Discussion 320
Acknowledgments 322
Bibliography 322
Optical Conductivity and Spatial Inhomogeneity in Cuprate Superconductors 331
7.1. Introduction 331
7.2. Low Frequency Optical Conductivity in the Cuprates 333
7.3. Optical Conductivity vs. Hole Concentration in BSCCO 341
7.4. Collective Mode Contribution to Optical Conductivity 346
7.5. Summary and Outlook 353
Bibliography 355
What Tc can Teach About Superconductivity 357
8.1. Introduction 357
8.2. Cuprate Superconductivity 358
8.3. Interactions Beyond the CuO2 Layers 360
8.4. Superconductivity Originating in the CuO2 Layers 371
8.5. Summary 373
Acknowledgments 373
Bibliography 373
High- Tc Superconductors: Thermodynamic Properties 377
9.1. Introduction 377
9.2. Low-Temperature Specific Heat 385
9.3. Chemical Substitutions 392
9.4. Stripes 399
9.5. Specific-Heat Anomaly at Tc: Fluctuations BCS Transition, BEC
9.6. Vortex-Lattice Melting 412
9.7. Calorimetric Evidence for the Pseudogap 418
Bibliography 422
Normal State Transport Properties 430
10.1. Introduction 430
10.2. Evolution of the In-Plane Resistivity with Doping 431
10.3. The Out-of-Plane Transport 437
10.4. The Anomalous Hall Coefficient and Violation of Kohler’s Rule 441
10.5. Impurity Studies 447
10.6. Thermal Transport 448
10.7. Discussion and Summary 450
Bibliography 453
High-Pressure Effects 457
11.1. Introduction 457
11.2. Elemental Superconductors 460
11.3. Binary Superconductors 467
11.4. Multiatom Superconductors: High- Tc Oxides 472
11.5. Conclusions and Outlook 485
Acknowledgments 487
Bibliography 487
Superconductivity in Organic Conductors 493
12.1. Introduction 493
12.2. Organic Building Blocks and Electronic Structure 494
12.3. “Conventional” Properties of Organic Superconductors 496
12.4. The “Standard Model” for Metallic, Insulating, and Antiferromagnetic Ground States 505
12.5. “Unconventional” Properties of Organic Superconductors 511
12.6. Comparison of High Tc Superconductors with Organic Conductors 516
12.7. Summary and Future Prospects 518
Appendix I. Further Reading in the Area of Organic Conductors 519
Acknowledgments 520
Bibliography 520
Numerical Studies of the 2D Hubbard Model 524
13.1. Introduction 524
13.2. Numerical Techniques 525
13.3. Properties of the 2D Hubbard Model 532
13.4. The Structure of the Effective Pairing Interaction 545
13.5. Conclusions 551
Acknowledgments 553
Bibliography 553
t- J Model and the Gauge Theory Description of Underdoped Cuprates 556
14.1. Introduction 556
14.2. Basic Electronic Structure of the Cuprates 557
14.3. Phenomenology of the Underdoped Cuprates 560
14.4. Introduction to RVB and a Simple Explanation of the Pseudogap 563
14.5. Slave-Boson Formulation of t–J Model and Mean Field Theory 565
14.6. U( 1) Gauge Theory of the URVB State 570
14.7. SU( 2) Slave- Boson Theory of Doped Mott Insulators 575
14.8. Spin Liquids, Deconfinement, and the Emergence of Gauge Fields and Fractionalized Particles 586
14.9. Application of Gauge Theory to the High Tc Superconductivity Problem 588
14.10. Summary and Outlook 592
Acknowledgments 594
Bibliography 594
How Optimal Inhomogeneity Produces High Temperature Superconductivity 598
15.1. Why High Temperature Superconductivity is Difficult 599
15.2. Dynamic Inhomogeneity-Induced Pairing Mechanism of HTC 601
15.3. Superconductivity in a Striped Hubbard Model: A Case Study 605
15.4. Why There is Mesoscale Structure in Doped Mott Insulators 611
15.5. Weak Coupling Vs. Strong Coupling Perspectives 613
15.6. What is so Special About the Cuprates? 614
15.7. Coda: High Temperature Superconductivity is Delicate But Robust 619
Acknowledgments 620
Appendix A: What Defines “High Temperature Superconductivity” 621
Bibliography 621
Superconducting States on the Border of Itinerant Electron Magnetism 625
16.1. Introduction 625
16.2. Uncharted Territory: The New Frontier 625
16.3. Logarithmic Fermi Liquid 626
16.4. The Puzzle of MnSi 627
16.5. Superconductivity on the Border of Magnetism 628
16.6. Three Dimensional vs. Quasi-Two-Dimensional Structures 628
16.7. Density Mediated Superconductivity 629
16.8. The Search for Superconductivity on the Border of Itinerant Ferromagnetism 630
16.9. Why Don’t All Nearly Magnetic Materials Show Superconductivity? 633
16.10. From Weak to Strong Coupling 635
16.11. Superconductivity Without Inversion Symmetry 636
16.12. Quantum Tuning 636
16.13. Concluding Remarks 639
Acknowledgements 639
Bibliography 640
Index 643

Erscheint lt. Verlag 20.3.2007
Mitarbeit Anpassung von: J.S. Brooks
Zusatzinfo XXXIII, 627 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Elektrodynamik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte BCS theory • Doping • electronic structure • High-Temperature Superconductivity • magnetism • optical properties • Superconductivity • Superconductor • tunneling
ISBN-10 0-387-68734-3 / 0387687343
ISBN-13 978-0-387-68734-6 / 9780387687346
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 37,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Theoretische Physik II

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2022)
Wiley-VCH GmbH (Verlag)
48,99
Theoretische Physik II

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2022)
Wiley-VCH GmbH (Verlag)
48,99