Handbook on Data Centers (eBook)
XIII, 1334 Seiten
Springer New York (Verlag)
978-1-4939-2092-1 (ISBN)
This handbook offers a comprehensive review of the state-of-the-art research achievements in the field of data centers. Contributions from international, leading researchers and scholars offer topics in cloud computing, virtualization in data centers, energy efficient data centers, and next generation data center architecture. It also comprises current research trends in emerging areas, such as data security, data protection management, and network resource management in data centers.
Specific attention is devoted to industry needs associated with the challenges faced by data centers, such as various power, cooling, floor space, and associated environmental health and safety issues, while still working to support growth without disrupting quality of service. The contributions cut across various IT data technology domains as a single source to discuss the interdependencies that need to be supported to enable a virtualized, next-generation, energy efficient, economical, and environmentally friendly data center.
This book appeals to a broad spectrum of readers, including server, storage, networking, database, and applications analysts, administrators, and architects. It is intended for those seeking to gain a stronger grasp on data center networks: the fundamental protocol used by the applications and the network, the typical network technologies, and their design aspects. The Handbook of Data Centers is a leading reference on design and implementation for planning, implementing, and operating data center networks.This handbook offers a comprehensive review of the state-of-the-art research achievements in the field of data centers. Contributions from international, leading researchers and scholars offer topics in cloud computing, virtualization in data centers, energy efficient data centers, and next generation data center architecture. It also comprises current research trends in emerging areas, such as data security, data protection management, and network resource management in data centers. Specific attention is devoted to industry needs associated with the challenges faced by data centers, such as various power, cooling, floor space, and associated environmental health and safety issues, while still working to support growth without disrupting quality of service. The contributions cut across various IT data technology domains as a single source to discuss the interdependencies that need to be supported to enable a virtualized, next-generation, energy efficient, economical, and environmentally friendly data center. This book appeals to a broad spectrum of readers, including server, storage, networking, database, and applications analysts, administrators, and architects. It is intended for those seeking to gain a stronger grasp on data center networks: the fundamental protocol used by the applications and the network, the typical network technologies, and their design aspects. The Handbook of Data Centers is a leading reference on design and implementation for planning, implementing, and operating data center networks.
Preface 5
Contents 8
Part I Energy Efficiency 13
Energy-Efficient and High-Performance Processing of Large-Scale Parallel Applications in Data Centers 14
1 Introduction 14
1.1 Motivation 14
1.2 Our Contributions 16
2 Related Work 17
3 Preliminaries 18
3.1 Power and Task Models 19
3.2 Problems 21
3.3 Lower Bounds 21
4 Heuristic Algorithms 22
4.1 Precedence Constraining 22
4.2 System Partitioning 23
4.3 Task Scheduling 25
5 Optimal Energy/Time/Power Allocation 26
5.1 Minimizing Schedule Length 26
5.1.1 Level 1 26
5.1.2 Level 2 27
5.1.3 Level 3 27
5.1.4 Level 4 28
5.2 Minimizing Energy Consumption 32
5.2.1 Level 1 32
5.2.2 Level 2 32
5.2.3 Level 3 33
5.2.4 Level 4 33
6 Simulation Data 36
7 Summary and Future Research 43
References 44
Energy-Aware Algorithms for Task Graph Scheduling, Replica Placement and Checkpoint Strategies 47
1 Introduction 47
2 Energy Models 49
2.1 Literature Survey 50
2.1.1 DVFS and Optimization Problems 51
2.1.2 Energy Models 52
2.2 Example 52
3 Minimizing the Energy of a Schedule 54
3.1 Optimization Problem 54
3.2 The CONTINUOUS Model 55
3.2.1 Special Execution Graphs 56
3.2.2 General DAGs 57
3.3 Discrete Models 57
3.3.1 The VDD-HOPPING Model 58
3.3.2 NP-Completeness and Approximation Results 58
3.4 Final Remarks 59
4 Replica Placement 59
4.1 Framework 60
4.1.1 Replica Servers 61
4.1.2 With Power Consumption 62
4.1.3 Objective Functions 63
4.1.4 Summary of Results 63
4.2 Complexity Results: Update Strategies 64
4.2.1 Running Example 64
4.2.2 Dynamic Programming Algorithm 65
4.3 Complexity Results with Power 67
4.3.1 Running Example 67
4.3.2 NP-Completeness of MINPOWER 68
4.3.3 A Pseudo-polynomial Algorithm for MINPOWER-BOUNDEDCOST 70
4.4 Simulations 71
4.4.1 Impact of Pre-existing Servers 71
4.4.2 With Power Consumption 73
4.4.3 Running Time of the Algorithms 74
4.5 Concluding Remarks 74
5 Checkpointing Strategies 75
5.1 Framework 76
5.1.1 Model 76
5.1.2 Optimization Problems 77
5.2 With a Single Chunk 78
5.2.1 SINGLESPEED Model 78
5.2.2 MULTIPLESPEEDS Model 79
5.3 Several Chunks 80
5.3.1 Single Speed Model 81
5.3.2 Multiple Speeds Model 82
5.4 Simulations 83
5.4.1 Simulation Settings 83
5.4.2 Comparison with Single Speed 85
5.4.3 Comparison Between EXPECTED-DEADLINE and Hard-Deadline 86
5.5 Concluding Remarks 86
6 Conclusion 87
References 88
Energy Efficiency in HPC Data Centers: Latest Advances to Build the Path to Exascale 91
1 Introduction 91
2 Computing Systems Architectures 92
2.1 Architecture of the Current HPC Facilities 92
2.2 Overview of the Main HPC Components 95
2.3 HPC Performance and Energy Efficiency Evaluation 99
3 Energy-Efficiency in HPC Data-Center: Overview & Challenges
3.1 The Exascale Challenge 102
3.2 Hardware Approaches Using Low-Power processors 103
3.3 Energy Efficiency of Virtualization Frameworks over HPC Workloads 105
3.4 Energy Efficiency in Resource and Job Management Systems (RJMSs) 110
4 Conclusion: Open Challenges 114
References 115
Techniques to Achieve Energy Proportionality in Data Centers: A Survey 118
1 Introduction 118
2 Energy Proportionality 120
2.1 Energy Proportionality at the Server Level 121
2.2 Energy Proportionality at Data Center Level 123
2.3 Overview on Power Proportionality Techniques at Different Data Center Levels 124
3 Energy Proportionality at Component Level 127
3.1 Energy Proportionality at the CPU 127
3.2 Energy Proportionality at the Memory 129
3.3 Energy Proportionality at the Disk 131
3.4 Energy Proportionality at the Networking Interface 132
4 Power Management Techniques at Server Level 133
5 Data Center/Cluster Level Power Management 135
5.1 Server Provisioning in Internet Data Centers (IDCs) 136
5.2 Virtual Machine Management 144
5.3 Other Data Center Level Power Management Techniques 148
6 Energy Cost Minimization Through Workload Distribution Across Data Centers 152
7 Data Center Simulation Tools 157
8 Performance of Server and Data Center Level Power Management Techniques 159
9 Conclusions 161
References 162
A Power-Aware Autonomic Approach for Performance Management of Scientific Applications in a Data Center Environment 172
1 Introduction 172
2 Background 175
3 An Online Look-Ahead Control-based Management Approach 182
4 Case Study: Performance Management of a Parallel Loop Execution Environment 187
5 Benefits of the Proposed Approach 193
6 Combining DLS Techniques with the Proposed Approach 194
7 Conclusion 195
References 196
CoolEmAll: Models and Tools for Planning and Operating Energy Efficient Data Centres 199
1 Introduction 199
1.1 The CoolEmAll Project 202
1.2 RelatedWork 204
2 Simulation, Visualisation and Decision Support Toolkit 205
2.1 Architecture 206
2.2 Application Profiler 208
2.3 Data Center Workload and Resource Management Simulator 209
2.3.1 Architecture 209
2.3.2 Workload Modelling 210
2.3.3 Resource Description 211
2.3.4 Simulation of Energy Efficiency 212
2.3.5 Application Performance Modelling 213
2.4 Interactive Computational Fluid Dynamics Simulation 214
2.5 Visualization 216
3 Data centre Efficiency Building Blocks 217
3.1 DEBB Concept and Structure 217
3.2 Hardware Models for Workload Simulation 220
3.2.1 Hardware Modelling in DCworms Workload Simulator 220
3.2.2 Hardware Power Profiles 222
3.2.3 Electrical Model of the Power Supply Unit 2.0 222
3.3 Hardware Models for Thermodynamic Profiles and Cooling Equipment 223
3.4 Hardware Models for CFD Simulation 225
3.5 Assessment of DEBBs 227
4 Energy Efficiency Metrics 227
4.1 State of the Art 228
4.2 Selected Metrics for CoolEmAll 229
4.2.1 Resource Usage Metrics 230
4.2.2 Energy Based Metrics 231
4.2.3 Heat-Aware Metrics 232
4.3 Application Power Model 233
5 Validation of the CoolEmAll Approach 234
5.1 Validation Approach 234
5.1.1 Capacity Management 236
5.1.2 Optimisation of Rack Arrangement in a Compute Room Using Open Data Centre Building Blocks 236
5.1.3 Analysis of Free Cooling Efficiency for Various Inlet Temperatures 237
5.2 Testbed 237
5.3 Analysis and Optimization of Data Centre Efficiency 239
5.3.1 Capacity Management 239
5.3.2 Analysing Cooling Efficiency in Compute-room 246
6 Business Impact 248
7 Summary 250
References 251
Smart Data Center 254
1 Introduction 254
2 System Model 255
2.1 Long Term Power Purchase 256
2.2 Real Time Power Purchase 257
3 Constraints 257
3.1 Purchasing Accuracy and Cost 257
3.2 Data Center Availability 258
3.3 UPS Lifetime 258
4 Cost Minimization 259
5 Algorithm Design 259
5.1 Drift Plus Penalty Upper Bound 260
5.2 Relaxed Optimization 262
5.3 Two Timescale Smart Data Center Algorithm 263
6 Performance Analysis 264
7 Related Work 267
8 Conclusions 267
References 268
Power and Thermal Efficient Numerical Processing 270
1 Introduction 270
2 Floating-Point Representation 271
2.1 Formats 272
2.2 Rounding Modes 272
2.3 Operations 273
2.4 Exceptions 273
3 Floating-Point Addition 273
4 Floating-Point Multiplication 275
5 Floating-Point Fused Multiply-Add 277
6 Floating-Point Division 279
6.1 Division by Digit Recurrence 279
6.1.1 Radix-4 Division Algorithm 280
6.1.2 Intel Penryn Division Unit 281
6.1.3 Radix-16 by Overlapping Two Radix-4 Stages 281
6.2 Division by Multiplication 283
7 Energy dissipation in FP-units 286
7.1 Energy Metrics 286
7.2 Implementation of the FP-Units 287
7.3 Energy Consumption in Floating-Point Workloads 288
7.4 Thermal Analysis 290
8 Conclusions and Outlook on FP-Units 292
References 292
Providing Green Services in HPC Data Centers: A Methodology Based on Energy Estimation 294
1 Introduction 294
2 Identifying Operations in a Service 297
2.1 Fault Tolerance Case 297
2.2 Data Broadcasting Case 298
2.3 Associated Parameters 299
3 Energy Calibration Methodology 300
3.1 Calibration of the Power Consumption op 301
3.2 Calibration of the Execution Time top 302
3.2.1 Fault Tolerance Case 303
3.2.2 Data Broadcasting Case 304
4 Energy Estimation Methodology 305
4.1 Fault Tolerance Case 306
4.1.1 Checkpointing 307
4.1.2 Message Logging 307
4.1.3 Coordination 308
4.2 Data Broadcasting Case 309
4.2.1 MPI/SAG and Hybrid/SAG 309
4.2.2 MPI/Pipeline and Hybrid/Pipeline 310
5 Validation of the Estimations 311
5.1 Calibration Results of the Platform 311
5.1.1 Calibrating the Power Consumption 311
5.1.2 Calibration of the Execution Time 314
5.2 Accuracy of the Estimations 320
5.2.1 Fault Tolerance Case 321
5.2.2 Data Broadcasting Case 323
6 Energy-Aware Choice of Services for HPC applications 325
6.1 Fault Tolerance Protocols 325
6.2 Data Broadcasting Algorithms 326
7 Conclusion 327
References 329
Part II Networking 331
Network Virtualization in Data Centers: A Data Plane Perspective 332
1 Introduction 332
1.1 Network Link Virtualization 333
1.2 Network Node Virtualization 333
1.3 Organization 334
2 Flexible Flow Matching for Network Link Virtualization 334
2.1 Background 334
2.2 Existing Solutions 336
2.3 Algorithmic Solution for Efficient Flexible Flow Matching 337
2.3.1 Motivations 337
2.3.2 Algorithms 339
2.3.3 Architecture 340
2.4 Performance Evaluation 342
2.4.1 Experimental Setup 342
2.4.2 Algorithm Evaluation 342
2.4.3 Hardware Implementation 344
3 Resource Consolidation in Network Node Virtualization 344
3.1 Background 345
3.2 Existing Solutions 346
3.3 Efficient Algorithm for Resource Consolidation 346
3.3.1 Motivations 346
3.3.2 Trie Merging 348
3.3.3 Lookup Process 349
3.3.4 Traffic Isolation 349
3.4 Analysis and Evaluation 350
3.4.1 Theoretical Comparison 350
3.4.2 Experimental Setup 350
3.4.3 Scalability 351
3.4.4 Execution Time 352
4 Summary and Discussion 352
References 353
Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 355
1 Introduction 355
2 Optical Switches Used in Optical Data Center Networks 357
2.1 Optical Packet Switches 357
2.2 Optical Circuit Switches 358
3 Approach 1: Optical Data Center Networks to Provide Large Bandwidth for All-to-All Communication 360
3.1 Optical Packet Switches with Large Bandwidth 361
3.2 Data Center Network Structure Using Optical Packet Switches 362
3.2.1 Connection Within Group 364
3.2.2 Connection Between Groups 364
3.2.3 Routing in Topology 364
3.3 Parameter Settings 366
3.3.1 Parameters for Connection Between Groups 367
3.3.2 Parameters for Connection within Group 367
3.4 Evaluation 368
3.4.1 Topologies 368
3.4.2 Properties of Topologies 370
3.4.3 Maximum Link Load 373
4 Approach 2: Networks to Achieve Low Energy Consumption 374
4.1 Overview 376
4.2 Virtual Network Topologies Suitable for Optical Data Center Networks 377
4.2.1 Requirements 377
4.2.2 Existing Network Structures for Data Centers 378
4.2.3 Generalized Flattened Butterfly 380
4.3 Control of Virtual Network Topology to Achieve Low Energy Consumption 388
4.3.1 Outline 388
4.3.2 Control of Topology to Satisfy Requirements 389
4.4 Evaluation 391
5 Conclusion 393
References 394
Scalable Network Communication Using Unreliable RDMA 396
1 Introduction 396
1.1 The Significance of Data Communication 397
1.2 Datacenter Computing and RDMA 399
1.3 High-Performance Computing and RDMA 399
1.4 RDMA and the Current Unreliable Datagram Network Transports 400
2 Overview of RDMA Technology 401
2.1 Overview of the iWARP Standard 402
2.2 Overview of the InfiniBand Standard 404
3 The Case for RDMA over Unreliable Transports 405
3.1 Importance of Unreliable Connectionless RDMA 405
3.2 Benefits of RDMA over Unreliable Datagrams for iWARP 406
4 RDMA over Unreliable Datagrams 408
4.1 Related Work and Development History 409
4.2 iWARP Extension Methodology 410
4.3 iWARP Design Changes 410
4.4 RDMA Write-Record 413
4.5 Packet Loss Design Considerations 416
5 Datagram-iWARP Software Implementation 416
5.1 iWARP Socket Interface 418
6 Experimental Results and Analysis 418
6.1 Verbs-Layer Microbenchmarks 419
6.2 Send/Recv Broadcast 419
6.3 Packet Loss and Performance 420
6.4 Datacenter Application Results 422
7 Summary 425
References 426
Packet Classification on Multi-core Platforms 428
1 Introduction 428
2 Background 429
2.1 Multi-field Packet Classification 429
2.2 Related Work 430
2.3 Multi-core Processor 431
3 Decision-Tree Based Approaches 432
3.1 Algorithms 432
3.2 Challenges and Prior Work 434
4 Decomposition-Based Approaches 435
4.1 Overview 435
4.2 Challenges and Prior Work 436
4.3 Preprocessing 437
4.4 Searching 440
4.5 Merging 441
5 Performance Evaluation and Summary of Results 441
5.1 Experimental Setup 441
5.2 Latency 443
5.3 Throughput 444
5.4 Cache Performance 445
5.5 Impact of the Number of Threads 447
5.6 Comparison with Existing Approaches 447
6 Conclusion 449
References 449
Optical Interconnects for Data Center Networks 451
1 Introduction 451
2 Need for Optical Interconnects in Data Center Networks 452
3 Optical Components in Data Centers 455
3.1 Semiconductor Optical Amplifier (SOA) 456
3.2 Silicon Micro Ring Resonator 456
3.3 ArrayedWaveguide Grating 456
3.4 Wavelength Selective Switch 458
3.5 MEMS Switch(Optical Switching Matrix, Optical Crossbar) 459
3.6 Circulators 461
3.7 Optical Multiplexer and De-multiplexer 461
4 Optical Interconnects in Data Center Networks and their Performance 461
4.1 Reconfigurable Architectures 461
4.1.1 An Enhanced Optically Connected Network Architecture 462
4.1.2 OSA, a Novel Optical Switching Architecture for DCNs 462
4.1.3 Wavelength-reconfigurable optical packet and circuit switched platform for DCNs 463
4.1.4 Next-Generation Optically-Interconnected High-Performance Data Centers 464
4.1.5 The Data Vortex Optical Packet Switched Interconnection Network 465
4.1.6 Proteus: A Topology Malleable Data Center Network 465
4.1.7 A Hybrid Optical Packet and Wavelength Selective Switch for High-Performance DCNs 466
4.2 Power Saving Architectures 467
4.2.1 VCSEL Based Energy Efficient and Bandwidth Reconfigurable Architecture 467
4.2.2 A Wavelength Striped, Packet Switched, Optical Interconnection Network 468
4.2.3 SPRINT: Scalable Photonic Switching Fabric for HIGH PERFORMANCE COMPUTING 468
4.3 Low Latency Architectures 470
4.3.1 DOS: A Scalable Optical Switch for Data Centers 470
4.3.2 Scalable Optical Packet Switch Architecture for Low Latency and High Load 471
4.3.3 AWGR Based Data Center Switches Using RSOA-based Optical Mutual Exclusion 472
4.3.4 A Petabit Photonic Packet Switch (P3S) 472
4.3.5 Optical Interconnection Networks: The OSMOSIS Project 473
4.3.6 A Scalable Optical Multi-Plane Interconnection Architecture 474
4.3.7 Low Latency and Large Port Count OPS for Data Center Network Interconnects 474
4.4 Link Bandwidth Scaling Architectures 476
4.4.1 Data Center Network Based on Flexible Bandwidth MIMO OFDM Optical Interconnects 476
4.4.2 Photonic Terabit Routers Employing WDM 477
4.5 High Radix Switch Design 478
5 Data center traffic characteristics 478
6 Energy Requirements for Data Center Networks 480
7 Routing in Data Centers 482
References 483
TCP Congestion Control in Data Center Networks 486
1 Introduction 486
2 TCP Impairments in Data Center Networks 487
2.1 TCP Incast 488
2.2 TCP Outcast 489
2.3 Queue Buildup 490
2.4 Buffer Pressure 491
2.5 Pseudo-Congestion Effect 491
2.6 Summary: TCP Impairments and Causes 492
3 TCP Variants for Data Center Networks 493
TCP with FG-RTO + Delayed ACKs Disabled [3] 493
3.3.1 Explicit Congestion Notification (ECN) 494
4 Summary: TCP Variants for DCNs 503
5 Open Issues 505
6 Concluding Remarks 505
References 505
Routing Techniques in Data Center Networks 507
1 Introduction 507
2 Classification of Routing Schemes in Data Centers 510
2.1 Topology-Aware Routing 511
2.1.1 Server-Centric Approach 511
2.1.2 Switch-centric Approach 512
2.2 Energy-Aware Routing 516
2.2.1 Green Routing 516
2.2.2 Power-Aware Routing 518
2.3 Traffic-sensitive Routing 519
2.3.1 DARD 520
2.3.2 Hedera 522
2.3.3 ESM: Multicast Routing for Data Centers 523
2.3.4 GARDEN 524
2.4 Routing for Content Distribution Networks (CDN) 525
2.4.1 Request-Routing in CDNs 526
2.4.2 Symbiotic Routing 527
2.4.3 fs-PGBR: A Scalable and Delay Sensitive Cloud Routing Protocol 528
2.5 Summary of All Routing and Forwarding Techniques 528
3 Open Issues and Challenges 529
4 Conclusions 530
References 531
Part III Cloud Computing 533
Auditing for Data Integrity and Reliability in Cloud Storage 534
1 Introduction 534
2 Information Auditing: Objective and Approaches 536
2.1 Definition of Information Auditing 536
2.2 Three Approaches of Information Auditing 537
3 Auditing for Data Integrity in Distributed Systems 538
3.1 Strategies of Auditing Data Integrity 538
3.2 Proof of Retrievability 539
3.3 Provable Data Possession 542
3.3.1 Preliminaries 543
3.3.2 Defining the PDP Protocol 544
3.3.3 The Secure PDP Scheme (S-PDP) 545
3.3.4 The Efficient PDP Scheme (E-PDP) 547
3.4 Compact Proof of Retrievability 547
3.4.1 System Model 547
3.4.2 Private Verification Construction 548
3.4.3 Public Verification Construction 549
4 Auditing in Cloud Storage Platform 550
4.1 Challenges 551
4.2 Public Verifiability 552
4.3 Dynamic Data Operations Support 552
4.4 Privacy Preserving 554
4.5 Multiple Verifications 555
5 Open Questions 556
6 Conclusions 557
References 557
I/O and File Systems for Data-Intensive Applications 559
1 Parallel File Systems vs. Data-Intensive File Systems: A Comparison 559
2 Chunk-Aware I/O: Enabling HPC on Data-Intensive File Systems 562
2.1 Motivation 562
2.2 Chunk-Aware I/O Design 564
2.3 Chunk-Aware I/O Implementation 569
2.4 Chunk-Aware I/O Analysis 569
2.5 CHAIO Performance 570
2.5.1 Experiment Setup 570
2.5.2 Performance with Different Request Sizes 570
2.5.3 Performance with Two Replicas 571
2.5.4 Performance with Different Number of Nodes 572
2.5.5 Overhead Analysis in Large-Scale Computing Environments 573
2.5.6 Load Balance 575
3 Related Works 575
3.1 HPC on Data-Intensive File Systems 576
3.2 N-1 Data Access and its Handling 577
4 Summary 578
References 579
Cloud Resource Pricing Under Tenant Rationality 581
1 Introduction 581
2 The Game Model 582
2.1 User Model and Virtual Instances Pricing 582
2.2 Modeling Cloud Revenue and Tenant Surplus 583
2.2.1 Stage I: Cloud Revenue Maximization 583
2.2.2 Stage II: Tenant Surplus Maximization 584
2.3 Stackelberg Equilibrium 584
3 Usage-Based Cloud Resource Pricing 585
3.1 Non-Uniform Pricing 585
3.1.1 Stage II: Tenant Surplus Maximization 585
3.1.2 Stage I: Cloud Pricing Choices 586
3.2 Uniform Pricing 590
3.2.1 Stage II: Tenant Surplus Maximization 590
3.2.2 Stage I: Cloud Pricing Choices 591
4 The Effectiveness of Stackelberg Strategies 592
4.1 Centralized Aggregate Network Utility Maximization 592
4.2 Total Network Utility Under Selfish Interactions 595
4.3 Asymptotic Analysis of Price of Anarchy 597
5 Broker Resource Pricing 598
6 Performance Evaluation 600
6.1 Setup 600
6.2 Economic Implications of Cloud Resource Pricing 600
6.3 Social Welfare Tradeoffs, and Hidden Effects 601
7 Related Work 602
8 Concluding Remarks 603
References 603
Online Resource Management for Carbon-Neutral Cloud Computing 604
1 Introduction 604
1.1 Background 605
1.2 Carbon Neutrality: Benefits and Challenges 606
1.3 Current Research and Limitations 606
1.4 Contributions 607
2 Model 608
2.1 Some Assumptions 609
2.2 Energy Sources 609
2.3 Data Center 610
2.4 Workload 611
3 Problem Formulation 612
3.1 Objective and Constraints 612
3.2 Offline Problem Formulation 614
4 Algorithm for Cost Optimization and Carbon Neutrality 614
4.1 Carbon Deficit Queue 614
4.2 Optimizing for Cost Minimization and Carbon Neutrality 615
4.2.1 Working Principle of COCA 615
4.2.2 Distributed Implementation 616
4.3 Performance Analysis 617
5 Simulation 619
5.1 Data Sets 619
5.2 Results 621
5.2.1 Efficiency of COCA 621
5.2.2 Comparison with Prediction-Based Method 623
6 Extension to Geographic Load Balancing 624
7 Conclusions 625
References 625
A Big Picture of Integrity Verification of Big Data in Cloud Computing 628
1 Introduction 628
2 Motivating Examples 630
3 Problem Analysis---Framework and Lifecycle 631
4 Representative Approaches and Analysis 633
4.1 Preliminaries 633
4.1.1 RSA Signature 633
4.1.2 Bilinear Pairing and BLS Signature 634
4.1.3 Merkle Hash Tree 634
4.2 Representative Schemes 635
4.2.1 PDP 635
4.2.2 Compact POR 636
4.2.3 DPDP 637
4.2.4 Public Auditing of Dynamic Data 637
4.2.5 Authorized Auditing with Fine-Grained Data Updates 638
5 Other Related Work 638
6 Conclusions and Future Work 639
References 640
An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing 643
1 Introduction 643
2 Related Work 646
3 An Out-of-Core Task-based Middleware 647
3.1 Global and Local Schedulers 649
3.2 Storage Service 650
4 Linear Algebra Frontend (LAF) 651
5 A Case Study: Block Iterative Eigensolver Using DOoC+LAF 652
5.1 Eigenvalue Problem in the Configuration Interaction Approach 652
5.2 Implementation Using 1D partitioning 654
5.3 Implementation Using a 2D Partitioning 656
6 Experiments 656
6.1 Practical Considerations 657
6.2 Performance Results for Nmax=8 658
7 Conclusions 660
References 661
Building Scalable Software for Data Centers: An Approach to Distributed Computing at Enterprise Level 664
1 Introduction to Big Data Problems 664
2 Known Solutions at Design Phase: Overview of Design Patterns for Parallel & Distributed Computing
3 Introduction to MapReduce Programming Model 669
4 Overview of Apache Hadoop: A Framework for Distributed Computing 672
4.1 Distributed File System: HDFS 672
4.2 MapReduce Framework & API
4.3 Database Support: HBase 678
4.4 High Level Programming Language: Pig 679
4.5 Hive: Another Database Support & High Level Programming Language
5 Conclusions 682
References 682
Cloud Storage over Multiple Data Centers 685
1 Introduction 685
2 Cloud Storage in a Nutshell 687
2.1 Architecture 687
2.2 Metadata Service 689
2.2.1 Layout Manager 689
2.2.2 Meta-Server 689
2.2.3 Lock Service 690
2.3 Storage Service 690
2.3.1 Namenode 690
2.3.2 Chunk Servers 691
3 Replication Strategies 691
3.1 Introduction 691
3.2 Asynchronous Replication 692
3.3 Synchronous Replication 694
3.4 Placement of Replicas 695
4 Data Striping Methods 696
4.1 Introduction 696
4.2 Erasure Code Types 697
4.3 Erasure Codes in Data Centers 698
5 Consistency Models 699
5.1 Introduction 699
5.2 Strong Consistency 700
5.3 Weak Consistency 701
6 Cloud of Multiple Clouds 703
6.1 Introduction 703
6.2 Architecture 704
6.3 Data Striping 705
6.4 Retrieving Strategy 707
6.5 Mutual Exclusion 707
7 Privacy and Security of Storage System 709
7.1 Introduction 709
7.2 Fine-Grained Data Access Control 710
7.3 Security on Storage Server 712
8 Conclusion and Future Directions 714
References 715
Part IV Hardware 720
Realizing Accelerated Cost-Effective Distributed RAID 721
1 Introduction 721
2 Background 723
2.1 Rationale 723
2.1.1 Backend vs. Client-driven Parity Generation 723
2.1.2 Block-Based vs. Per-File RAID 724
2.1.3 Hardware vs. Accelerated Software RAID 724
2.1.4 Discussion 725
2.2 Enabling Technologies 725
2.2.1 Erasure Codes 725
2.2.2 The Lustre Parallel File System 727
2.2.3 KGPU 727
3 Design 728
3.1 System Overview 728
3.2 RAID-enabled PFS Design 729
3.3 Control Flow 730
3.4 Degraded Array Reconstruction 732
4 Implementation 732
4.1 Basic GPU Implementation 733
4.2 Optimizations 733
5 Evaluation 734
5.1 Experimental Setup 734
5.2 I/O Throughput Measurement 735
5.2.1 Raw Throughput 735
5.2.2 Encoding Throughput 736
5.2.3 Impact of Number of Disks on Throughput 737
5.2.4 End-to-End Data Integrity 739
5.3 RAID Reconstruction Cost 739
5.4 Impact on Applications 740
6 Related Work 740
7 Conclusion 742
References 742
Efficient Hardware-Supported Synchronization Mechanisms for Manycores 745
1 Introduction 745
2 The G-Lines Technology 746
3 Hardware Barrier Synchronization 747
4 The GBarrier Synchronization Mechanism 748
4.1 Dedicated On-Chip Network Architecture 749
4.2 Synchronization Protocol 750
4.3 Programmability Issues 753
5 Performance Implications 754
5.1 Implementation Technologies 754
5.1.1 G-Lines Technology 754
5.1.2 Standard Technology 754
5.2 Raw Performance Statistics 755
6 Evaluation 757
6.1 Experimental Setup 757
6.2 Barrier Implementations 758
6.3 Performance Results 759
6.3.1 Execution Time 759
6.3.2 Network Traffic 763
6.3.3 Energy Efficiency 765
7 Related Work 766
8 Hardware Lock Synchronization 768
9 The GLock Synchronization Mechanism 770
9.1 Dedicated On-Chip Network Architecture 770
9.2 Synchronization Protocol 771
9.3 Programmability Issues 774
10 Performance Implications 776
10.1 Implementation Technologies 776
10.1.1 G-Lines Technology 776
10.1.2 Standard Technology 777
10.2 Raw Performance Statistics 778
11 Evaluation 779
11.1 Experimental Setup 779
11.2 Post-mortem Analysis of Benchmarks 781
11.3 Lock Implementations 782
11.4 Performance Results 783
11.4.1 Execution Time 783
11.4.2 Network Traffic 786
11.4.3 Energy Efficiency 788
12 Related Work 789
13 Conclusions 791
References 793
Hardware Approaches to Transactional Memory in Chip Multiprocessors 796
1 Introduction 796
2 Why Transactional Memory Is Going Mainstream 798
2.1 The Drawbacks of Lock-Based Synchronization 799
2.2 The Transactional Abstraction 799
2.3 High-Performance Transactional Memory 800
2.4 Industrial Adoption of Hardware Transactional Memory 801
3 Fundamentals of Transactional Memory 802
4 Hardware Mechanisms for Transactional Memory 803
4.1 ISA Extensions 803
4.2 Transactional Book-Keeping 804
4.3 Data Versioning 805
4.4 Conflict Detection and Resolution 805
4.5 Transaction Commit 807
4.6 Transaction Abort 807
5 Intel TSX: TM Support in Mainstream Processors 808
5.1 Hardware Lock Elision 809
5.2 Restricted Transactional Memory 810
6 Analysing Intel TSX Performance on Haswell 810
7 An Overview of Hardware TM Research 815
8 Conclusions 821
References 821
Part V Modeling and Simulation 827
Data Center Modeling and Simulation Using OMNeT++ 828
1 Introduction to Modeling and Simulation (M& S) Methodology
1.1 Parallel Discrete Event Simulation---PDES 830
2 Data Center Architectures 831
3 Data Center Modeling Using OMNeT++ 833
3.1 Simple Two Node Simulation 833
3.2 Advance Level Simulation 836
3.3 Data Center Simulation Model 839
4 Wrap Up 843
References 843
Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 845
1 Introduction 845
1.1 Overall Datacenter Architecture 847
1.2 Datacenter Workload Characteristics 848
1.3 Energy Efficiency of Datacenters 850
1.4 Chapter Organization 851
2 State-of-the-Art in Datacenter Design 852
2.1 Computing Servers 852
2.2 Cooling Infrastructure 854
3 Power and Temperature Modeling and Monitoring 857
3.1 Server Modeling 858
3.2 Datacenter Modeling 861
3.3 Monitoring System for Datacenters 863
4 Power and Thermal Managements of Servers 864
4.1 Overview of CPU Power and Thermal Management Techniques 865
4.2 Run-Time Hierarchical Power and Thermal Management for Server Architectures 867
4.3 Design-Time Power and Thermal Optimizations 871
5 Power and Thermal Managements for Server Clusters 876
5.1 Conventional Solution to Minimize Power Consumption for Server Clusters 876
5.2 Correlation-Aware Power and Temperature Management 877
6 Power Minimization of Datacenters with Hybrid Cooling Architectures 886
6.1 Formal Problem Definition 888
6.2 Multi-objective Trade-offs Exploration Between Cooling Mode and Utilization Threshold 889
6.3 Simulation Results 893
7 Conclusions 895
References 896
Thermal Modeling and Management of Storage Systems in Data Centers 902
1 Introduction 902
2 Related Work 904
2.1 Efficient Data Centers 904
2.2 Thermal Modeling 905
2.3 Thermal Management 905
3 Thermal Modeling 906
3.1 CPU Thermal Model 907
3.2 Disk Thermal Model 909
3.3 Thermal Model of Data Nodes 911
3.4 Evaluation of Temperature Models 912
4 Thermal Management Strategies 913
4.1 Task Scheduling 914
4.2 Predictive Thermal-Aware Data Transmission 917
5 Results 919
5.1 Task Scheduling 919
5.1.1 CPU-Intensive Workload 920
5.1.2 I/O-Intensive Workloads 922
5.2 Predictive Thermal-Aware Management System 922
6 Conclusion 926
References 927
Modeling and Simulation of Data Center Networks 931
1 Data Centers and Cloud Computing 931
2 DCN Architectures 933
3 DCN Graph Modeling 935
3.1 ThreeTier DCN Model 936
3.2 FatTree DCN Model 937
3.3 DCell DCN Model 938
4 DCNs Implementation in ns-3 939
4.1 ThreeTier DCN Implementation Details 939
4.2 FatTree DCN Implementation Details 940
4.3 DCell DCN Implementation Details 942
References 944
Part VI Security 945
C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 946
1 Introduction 946
2 Background 949
3 Threat Model, Scenarios and Assumptions 950
3.1 Threat of Data Center 950
3.2 Threat Categories of Covert Channels 951
3.3 Threat Scenarios of Covert Channels 952
3.4 Assumptions 953
4 Overview of C2Hunter 953
4.1 Challenges 953
4.2 Formal Requirements 954
4.3 C2Hunter Framework Summary 954
4.4 Covert Channel Modeling 956
5 Two-Phase Synthesis Detection Algorithm 958
5.1 Markov Detection Algorithm 959
5.2 Bayesian Detection Algorithm 962
6 Mitigation Algorithm 963
7 Implementation and Evaluation 964
7.1 Covert Channels Scenarios 965
7.2 Captor and Detector 966
7.3 Interrupter in Hypervisor 967
7.4 Experimental Settings 967
7.5 Detection Analysis 969
7.6 Mitigation Analysis 972
8 Discussion 974
9 Related Work 976
10 Conclusion 977
References 978
Selective and Private Access to Outsourced Data Centers 982
1 Introduction 982
2 Access Control Enforcement 984
2.1 Selective Encryption 984
2.2 Updates to the Access Control Policy 988
2.3 Write Privileges 992
2.4 Attribute-Based Encryption 994
3 Efficient Access to Encrypted Data 995
4 Protecting Access Privacy 998
4.1 Oblivious RAM 999
4.2 Dynamically Allocated Data Structures 1000
4.3 Shuffle Index 1002
5 Combining Access Control and Indexing Techniques 1007
6 Conclusions 1010
References 1010
Privacy in Data Centers: A Survey of Attacks and Countermeasures 1013
1 Introduction 1013
2 Privacy 1015
3 Privacy Enhancing Technologies 1016
4 Anonymous Communications 1017
5 Mix Networks 1019
6 Traffic Analysis 1019
7 Mix Systems Attacks 1020
8 The Disclosure Attack 1020
9 The Statistical Disclosure Attack (SDA) 1021
10 Extending and Resisting Statistical Disclosure 1022
11 Two Sided Statistical Disclosure Attack (TS-SDA) 1022
12 Perfect Matching Disclosure Attack (PMDA) 1023
13 Vida: How to Use Bayesian Inference to De-anonymize Persistent Communications 1024
14 SDA with Two Heads (SDA-2H) 1024
15 Conclusions 1025
References 1025
Part VII Data Services 1028
Quality-of-Service in Data Center Stream Processing for Smart City Applications 1029
1 Introduction 1029
2 Distributed Stream Processing Systems 1030
2.1 Abstract Model 1031
2.2 Development Model 1033
2.3 Execution Model 1034
3 Platforms for Distributed Stream Processing 1036
3.1 IBM InfoSphere Streams 1036
3.2 Apache S4 1037
3.3 Storm 1038
4 QoS-Aware Stream Processing 1039
5 Quasit 1041
5.1 Quasit Abstract Model 1042
5.2 Quasit Development Model 1043
5.3 Quasit Execution Model 1048
6 Load-Adaptive Active Replication (LAAR) 1049
7 Conclusions 1054
References 1055
Opportunistic Databank: A context Aware on-the-fly Data Center for Mobile Networks 1059
1 Introduction 1059
2 Data Replication in Manets---A Brief Overview 1062
3 Data Replication in DTNs 1064
3.1 System Model 1065
3.2 Hybrid Scheme for Message Replication (HSM) for DTNs 1067
3.3 Empirical Setups and Results 1069
3.3.1 Performance Metrics 1070
3.3.2 Related DTN Replication Schemes 1071
3.3.3 Simulation Results 1072
4 Conclusions 1074
References 1074
Data Management: State-of-the-Practice at Open-Science Data Centers 1077
1 Introduction 1077
2 Data Storage Infrastructure 1079
2.1 Data Storage Media 1079
2.2 General Architecture of a Data Storage System 1080
2.3 Supporting Databases for Structured and Semi-Structured Datasets 1080
2.4 Examples of Notable Storage Systems at Open-Science Data Centers 1081
3 Data Movement 1082
3.1 Parallel File-System Associated with Computational Resources---Secondary Storage 1082
3.2 Optimizing Data Movement in Context of Secondary Storage System 1085
3.3 Optimizing Data Movement in Context of Tertiary Storage System 1086
4 Data Archiving 1087
5 Data Preservation 1088
6 Conclusion 1089
References 1089
Data Summarization Techniques for Big Data---A Survey 1091
1 Introduction 1091
2 Applications of Data Summarization 1093
3 Clustering Algorithms 1095
3.1 Background 1095
3.2 Hierarchical Clustering 1097
3.3 Partitioning Clustering 1101
3.4 Density-Based Clustering Algorithms 1103
3.5 Grid-Based Clustering Algorithms 1105
4 Sampling 1107
4.1 Probability Sampling 1108
4.2 Non-Probabilistic Sampling 1114
5 Compression 1115
6 Wavelets 1120
7 Histograms 1123
8 Micro-Clustering 1125
9 Conclusion 1126
References 1126
Part VIII Monitoring 1135
Central Management of Datacenters 1136
1 Introduction 1136
2 Organization of the Chapter 1137
2.1 Management Layer Network 1137
2.2 Provisioning of Servers 1139
2.2.1 Reason to Use Provisioning Servers 1139
2.3 Platform Configuration Management System 1140
2.4 Resource Utilization Monitoring 1140
2.5 Alerting and Alarming System 1142
2.6 Central Logging System 1142
2.6.1 Security Information Event Management 1144
2.7 Intrusion Detection and Prevention System 1144
2.7.1 Types of Intrusion Detection System (IDS) 1145
Network-Based Intrusion Detection System (NIDS) 1146
Host-Based Intrusion Detection System (HIDS) 1146
2.7.2 How Intrusion Detection System Works? 1146
Anomaly-Based Intrusion Detection System 1146
Signature-Based Intrusion Detection System 1146
2.8 Datacenter Backup and Restore 1147
2.8.1 The Components of Data Backup and Recovery 1148
Cold and Hot Backup 1148
Enterprise Backup and Restore Software 1148
Online and Offline Storage 1148
2.9 Security Management Systems 1149
3 Conclusion 1149
References 1151
Monitoring of Data Centers using Wireless Sensor Networks 1152
1 Introduction 1152
2 Survey Study 1155
3 Conclusion 1163
References 1163
Network Intrusion Detection Systems in Data Centers 1165
1 Introduction 1165
2 Origin and Standardization 1170
3 Architecture 1172
4 Subjects of Study 1175
5 Detection Strategies 1177
6 Alert Correlation 1181
7 Summary 1183
References 1184
Software Monitoring in Data Centers 1188
1 Introduction 1188
1.1 Performance Degradation 1189
1.2 Function Failure 1190
1.3 Energy Conservation 1191
2 Monitoring Content 1192
2.1 Basic Software 1193
2.2 Middleware 1193
2.3 Database 1194
2.4 Application Software 1194
2.5 PM (Physical Machine) and VM (Virtual Machine) 1196
2.6 User Behavior Analysis 1198
2.7 Hot-Spot Evaluation 1198
2.8 Performance Prediction and Advanced Warning 1200
2.9 The Performance Bottlenecks Analysis 1201
3 Monitoring Timing 1202
3.1 Resource-Oriented Monitoring 1202
3.2 Business-Oriented Monitoring 1205
4 Participators 1207
4.1 Resource Managers 1207
4.2 Service Operators 1208
4.3 Data Owner 1209
4.4 Software Developers 1209
5 Monitoring Site 1210
5.1 On-Site Monitor 1211
5.2 Off-Site Monitor 1211
6 Monitoring Methods 1212
6.1 Visualization Monitoring 1212
6.2 Hot-Spot Evaluation 1214
6.3 Performance Prediction 1220
6.4 Analyzing User's Habits 1226
6.5 Tools 1227
References 1229
Part IX Resource Management 1233
Usage Patterns in Multi-tenant Data Centers: a Large-Case Field Study 1234
1 Introduction 1234
2 Multi-tenant Datacenters 1236
2.1 Evolution of Resource Demands 1236
2.2 CPU Load Balancing 1237
2.3 The Impact of Time Scales 1240
3 Summary 1242
References 1242
On Scheduling in Distributed Transactional Memory: Techniques and Tradeoffs 1244
1 Introduction 1244
2 Preliminaries and System Model 1246
2.1 Distributed Transactions 1246
2.2 Definitions 1247
2.3 Transactional Scheduler 1247
3 Bi-interval 1248
3.1 Motivation 1248
3.2 Scheduler Design 1249
3.3 Analysis 1250
3.4 Evaluation 1252
4 Cluster-Based Transactional Scheduler 1253
4.1 Motivation 1253
4.2 Scheduler Design 1254
4.3 Analysis 1256
4.4 Evaluation 1257
5 Summary and Conclusion 1258
References 1259
Dependability-Oriented Resource Management Schemes for Cloud Computing Data Centers 1261
1 Introduction 1261
2 System Model and Failure Behavior of Data Center Components 1262
2.1 Overview of the Data Center Architecture 1262
2.2 Failure Behavior of Servers 1263
2.3 Failure Behavior of Network Components 1264
2.4 Analysis of the Impact of Failures on Applications 1265
3 Resource Management in Data Center Environments 1266
3.1 Global Constraints 1268
3.2 Infrastructure-Oriented Constraints 1269
3.3 Application-Oriented Constraints 1270
4 Initial Allocation of Virtual Machines in Data Center Environments 1271
4.1 A Comprehensive Scheme for Virtual Machines Allocation 1271
4.2 Other Schemes for Virtual Machines Allocation 1273
5 Runtime Adaption of Virtual Machine Allocation in Data Center Environments 1275
5.1 Runtime Adaption to Balance Availability and Performance 1276
5.2 Other Schemes for Runtime Virtual Machines Allocation Adaption 1277
6 Conclusions 1279
References 1279
Resource Scheduling in Data-Centric Systems 1282
1 Introduction 1282
2 Terminology 1284
3 Classification and State-of-the-Art 1285
3.1 Hierarchy of Resource Scheduling in DCS 1285
3.2 Resource Provision 1287
3.2.1 Economic-Based Resource Provision 1287
3.2.2 SLA-Oriented Resource Provision 1288
3.2.3 Utility-Oriented Resource Provision 1288
3.3 Job Scheduling 1289
3.3.1 Static Job Scheduling 1290
3.3.2 Dynamic Job Scheduling 1290
3.4 Data Scheduling 1292
3.4.1 Online Data Scheduling 1293
3.4.2 Offline Data Scheduling 1293
4 Case Studies 1294
4.1 Amazon EC2 1294
4.2 Dawning Nebulae 1295
4.3 Taobao Yunti 1296
4.4 Microsoft SCOPE 1297
5 Future Trends and Challenges 1298
6 Conclusions 1299
References 1300
Index 1306
Erscheint lt. Verlag | 16.3.2015 |
---|---|
Zusatzinfo | XIII, 1334 p. 439 illus., 283 illus. in color. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Netzwerke ► Sicherheit / Firewall | |
Technik ► Nachrichtentechnik | |
Schlagworte | Commodity Networks • Data Center Applications (DCA) • Data Center Networks (DCN) • Data Center Optimization Techniques (DCOT) • Data Center Protocols • Data Life Cycle • Data Management and Exploration • Data Security • Energy Efficient Data Centers (EEDC) • Scalability in Data Centers • SSL and TLS • Virtual Data Center (VDC) |
ISBN-10 | 1-4939-2092-8 / 1493920928 |
ISBN-13 | 978-1-4939-2092-1 / 9781493920921 |
Haben Sie eine Frage zum Produkt? |
Größe: 43,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich