5G Technology
Wiley-Blackwell (Verlag)
978-1-119-23631-3 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
5G brings new technology solutions to the 5G mobile networks including new spectrum options, new antenna structures, new physical layer and protocols designs and new network architectures. 5G Technology: 3GPP New Radio is a comprehensive resource that offers explanations of 5G specifications, performance evaluations, aspects of device design, practical deployment considerations and illustrative examples from field experiences.
With contributions from a panel of international experts on the topic, the book presents the main new technology components in 5G and describes the physical layer, radio protocols and network performance. The authors review the deployment aspects such as site density and transport network and explore the 5G performance aspects including data rates and coverage and latency. The book also contains illustrative examples of practical field measurement. In addition, the book includes the most recent developments in 4G LTE evolution and offers an outlook for the future of the evolution of 5G. This important book:
Offers an introduction to 5G technology and its applications
Contains contributions from international experts on the topic
Reviews the main technology components in 5G
Includes information on the optimisation of the Internet of things
Presents illustrative examples of practical field measurements
Written for students and scientists interested in 5G technology, 5G Technology: 3GPP New Radio provides a clear understanding of the underlying 5G technology that promotes the opportunity to take full benefit of new capabilities.
HARRI HOLMA, Fellow, Nokia Bell Labs, Finland. Harri Holma has edited seven books about 3G and 4G technologies since 2001. Dr Holma is working with Nokia Bell Labs with main interest in radio systems and mobile technologies.
ANTTI TOSKALA, Head of 3GPP Radio Standardization, Nokia Bell Labs, Finland. Antti Toskala's group was responsible for the standardization of WCDMA physical layer, High Speed Downlink Packet Access (HSDPA) and for the start of uplink packet data evolution (HSUPA). As part of the 2010 LTE World Summit LTE Awards, he received the "Award for Individual Contribution for LTE Development" recognizing his contribution to both LTE standardization and LTE knowledge spreading in the industry.
TAKEHIRO NAKAMURA, VP and Managing Director of the 5G Laboratories in NTT DOCOMO, Inc., Japan. Mr Nakamura joined NTT Laboratories in 1990. He has been engaged in the standardization activities for the WCDMA, HSPA, LTE/LTE-Advanced and 5G at ARIB in Japan since 1997. He has been the leader of 2020 and Beyond Ad Hoc (20B AH) in ARIB since October 2013.
List of Contributors xvii
Foreword xix
Preface xxi
Acknowledgment xxiii
1 Introduction 1
Harri Holma, Antti Toskala, Takehiro Nakamura, and Tommi Uitto
1.1 Introduction 1
1.2 5G Targets 3
1.3 5G Technology Components 3
1.4 5G Spectrum 4
1.5 5G Capabilities 5
1.6 5G Capacity Boost 7
1.7 5G Standardization and Schedule 8
1.8 5G Use Cases 9
1.9 Evolution Path from LTE to 5G 10
1.10 Mobile Data Traffic Growth 10
1.11 Summary 11
Reference 11
2 5G Targets and Standardization 13
Hiroyuki Atarashi, Mikio Iwamura, Satoshi Nagata, Takehiro Nakamura, and Antti Toskala
2.1 Introduction 13
2.2 ITU 13
2.2.1 IMT Vision for 2020 and Beyond 14
2.2.2 Standardization of IMT-2020 Radio Interface Technologies 15
2.3 NGMN 17
2.3.1 NGMN 5G Use Cases 18
2.3.2 NGMN 5G Requirements 19
2.3.3 NGMN 5G Architecture Design Principles 20
2.3.4 Spectrum, Intellectual Property Rights (IPR), and Further Recommendations by NGMN 21
2.4 3GPP Schedule and Phasing 22
References 25
3 Technology Components 27
Harri Holma
3.1 Introduction 27
3.2 Spectrum Utilization 27
3.2.1 Frequency Bands 27
3.2.2 Bandwidth Options 29
3.2.3 Spectrum Occupancy 29
3.2.4 Control Channel Flexibility 30
3.2.5 Dynamic Spectrum Sharing 31
3.3 Beamforming 31
3.4 Flexible Physical Layer and Protocols 33
3.4.1 Flexible Numerology 33
3.4.2 Short Transmission Time and Mini-slot 34
3.4.3 Self-Contained Subframe 35
3.4.4 Asynchronous HARQ 36
3.4.5 Lean Carrier 37
3.4.6 Adaptive Reference Signals 38
3.4.7 Adaptive UE Specific Bandwidth 38
3.4.8 Distributed MIMO 39
3.4.9 Waveforms 39
3.4.10 Channel Coding 41
3.4.11 Pipeline Processing and Front-Loaded Reference Signals 41
3.4.12 Connected Inactive State 41
3.4.13 Grant-Free Access 43
3.4.14 Cell Radius of 300 km 43
3.5 Network Slicing 44
3.6 Dual Connectivity with LTE 44
3.7 Radio Cloud and Edge Computing 46
3.8 Summary 47
Reference 47
4 Spectrum 49
Harri Holma and Takehiro Nakamura
4.1 Introduction 49
4.2 Millimeter Wave Spectrum Above 20 GHz 52
4.3 Mid-Band Spectrum at 3.3-5.0 GHz and at 2.6 GHz 55
4.4 Low-Band Spectrum Below 3 GHz 58
4.5 Unlicensed Band 59
4.6 Shared Band 62
4.7 3GPP Frequency Variants 64
4.8 Summary 64
References 64
5 5G Architecture 67
Antti Toskala and Miikka Poikselka
5.1 Introduction 67
5.2 5G Architecture Options 67
5.3 5G Core Network Architecture 70
5.3.1 Access and Mobility Management Function 72
5.3.2 Session Management Function 73
5.3.3 User Plane Function 73
5.3.4 Data Storage Architecture 73
5.3.5 Policy Control Function 73
5.3.6 Network Exposure Function 74
5.3.7 Network Repository Function 74
5.3.8 Network Slice Selection 74
5.3.9 Non-3GPP Interworking Function 74
5.3.10 Auxiliary 5G Core Functions 74
5.4 5G RAN Architecture 75
5.4.1 NG-Interface 78
5.4.2 Xn-Interface 79
5.4.3 E1-Interface 80
5.4.4 F1-Interface 80
5.5 Network Slicing 81
5.5.1 Interworking with LTE 82
5.6 Summary 85
References 86
6 5G Physical Layer 87
Mihai Enescu, Keeth Jayasinghe, Karri Ranta-Aho, Karol Schober, and Antti Toskala
6.1 Introduction 87
6.2 5G Multiple Access Principle 88
6.3 Physical Channels and Signals 92
6.4 Basic Structures for 5G Frame Structure 95
6.5 5G Channel Structures and Beamforming Basics 98
6.6 Random Access 100
6.7 Downlink User Data Transmission 101
6.8 Uplink User Data Transmission 103
6.9 Uplink Signaling Transmission 105
6.10 Downlink Signaling Transmission 108
6.11 Physical Layer Procedures 111
6.11.1 HARQ Procedure 112
6.11.2 Uplink Power Control 112
6.11.3 Timing Advance 113
6.12 5G MIMO and Beamforming Operation 113
6.12.1 Downlink MIMO Transmission Schemes 113
6.12.2 Beam Management Framework 114
6.12.2.1 Initial Beam Acquisition 116
6.12.2.2 Beam Measurement and Reporting 116
6.12.2.3 Beam Indication: QCL and Transmission Configuration Indicator (TCI) 117
6.12.2.4 Beam Recovery 120
6.12.3 CSI Framework 122
6.12.3.1 Reporting Settings 122
6.12.3.2 Resource Settings 122
6.12.3.3 Reporting Configurations 123
6.12.3.4 Report Quantity Configurations 125
6.12.4 CSI Components 126
6.12.4.1 Channel Quality Indicator (CQI) 126
6.12.4.2 Precoding Matrix Indicator (PMI) 126
6.12.4.3 Resource Indicators: CRI, SSBRI, RI, LI 132
6.12.5 Uplink MIMO Transmission Schemes 132
6.12.5.1 Codebook-Based Uplink Transmission 132
6.12.5.2 Non-Codebook-Based Uplink Transmission 133
6.13 Channel Coding with 5G 133
6.13.1 Channel Coding for Data Channel 134
6.13.1.1 5G LDPC Code Design 135
6.13.1.2 5G LDPC Coding Chain 137
6.13.2 Channel Coding for Control Channels 140
6.13.2.1 5G Polar Coding Design 140
6.14 Dual Connectivity 142
6.15 5G Data Rates 144
6.16 Physical Layer Measurements 145
6.17 UE Capability 146
6.18 Summary 147
References 148
7 5G Radio Protocols 149
Tero Henttonen, Jarkko Koskela, Benoist Sebire, and Antti Toskala
7.1 Introduction 149
7.2 5G Radio Protocol Layers 150
7.3 SDAP 151
7.3.1 Overview 151
7.3.2 QoS Flow Remapping 153
7.3.3 MDBV 155
7.3.4 Header 155
7.4 PDCP 156
7.4.1 Overview 156
7.4.2 Reordering 156
7.4.3 Security 157
7.4.4 Header Compression 157
7.4.5 Duplicates and Status Reports 158
7.4.6 Duplication 159
7.5 RLC 160
7.5.1 Overview 160
7.5.2 Segmentation 160
7.5.3 Error Correction 161
7.5.4 Transmissions Modes 161
7.5.5 Duplication 161
7.6 MAC Layer 162
7.6.1 Overview 162
7.6.2 Logical Channels 162
7.6.3 Random Access Procedure 163
7.6.4 HARQ and Transmissions 163
7.6.5 Scheduling Request 164
7.6.6 Logical Channel Prioritization and Multiplexing 164
7.6.7 BSR 165
7.6.8 PHR 166
7.6.9 DRX 166
7.6.10 Bandwidth Parts 166
7.6.11 BFD and Recovery 167
7.6.12 Other Functions 167
7.6.13 MAC PDU Structure 168
7.7 The RRC Protocol 168
7.7.1 Overview 168
7.7.2 Broadcast of System Information 171
7.7.3 Paging 174
7.7.4 Overview of Idle and Inactive Mode Mobility 175
7.7.5 RRC Connection Control and Mobility 179
7.7.6 RRC Support of Upper Layers 183
7.7.7 Different Versions of Release 15 RRC Specifications 184
7.8 Radio Protocols in RAN Architecture 185
7.9 Summary 185
References 186
8 Deployment Aspects 187
Harri Holma, Riku Luostari, Jussi Reunanen, and Puripong Thepchatri
8.1 Introduction 187
8.2 Spectrum Resources 188
8.2.1 Spectrum Refarming and Dynamic Spectrum Sharing 188
8.3 Network Density 190
8.4 Mobile Data Traffic Growth 190
8.4.1 Mobile Data Volume 190
8.4.2 Traffic Asymmetry 191
8.5 Base Station Site Solutions 192
8.6 Electromagnetic Field (EMF) Considerations 194
8.7 Network Synchronization and Coordination Requirements 195
8.7.1 Main Interference Scenarios in TDD System 196
8.7.2 TDD Frame Configuration Options 197
8.7.3 Cell Size and Random Access Channel 197
8.7.4 Guard Period and Safety Zone 198
8.7.5 Intra-Frequency Operation 199
8.7.6 Inter-Operator Synchronization 201
8.7.7 Synchronization Requirements in 3GPP 202
8.7.8 Synchronization from Global Navigation Satellite System (GNSS) 204
8.7.9 Synchronization with ToP 205
8.7.10 Timing Alignment Between Vendors 208
8.8 5G Overlay with Another Vendor LTE 209
8.9 Summary 210
References 211
9 Transport 213
Esa Markus Metsala and Juha Salmelin
9.1 5G Transport Network 213
9.1.1 5G Transport 213
9.1.2 Types of 5G Transport 214
9.1.3 Own versus Leased Transport 215
9.1.4 Common Transport 216
9.1.5 Mobile Backhaul Tiers 216
9.1.6 Logical and Physical Transport Topology 218
9.1.7 Standards Viewpoint 218
9.2 Capacity and Latency 219
9.2.1 Transport Capacity Upgrades 219
9.2.2 Access Link 220
9.2.3 Distribution Tier 221
9.2.4 Backhaul and High Layer Fronthaul Capacity 221
9.2.5 Low Layer Fronthaul Capacity 222
9.2.6 Latency 223
9.2.7 QoS Marking 224
9.3 Technologies 225
9.3.1 Client Ports 225
9.3.2 Networking Technologies Overview 226
9.4 Fronthaul and Backhaul Interfaces 228
9.4.1 Low Layer Fronthaul 228
9.4.2 NG Interface 230
9.4.3 Xn/X2 Interfaces 231
9.4.4 F1 Interface 231
9.5 Specific Topics 232
9.5.1 Network Slicing in Transport 232
9.5.2 URLLC Transport 233
9.5.3 IAB (Integrated Access and Backhaul) 234
9.5.4 NTNs (Non-Terrestrial Networks) 234
9.5.5 Time-Sensitive Networks 235
References 236
10 5G Performance 239
Harri Holma, Suresh Kalyanasundaram, and Venkat Venkatesan
10.1 Introduction 239
10.2 Peak Data Rates 241
10.3 Practical Data Rates 243
10.3.1 User Data Rates at 2.5-5.0 GHz 243
10.3.2 User Data Rates at 28 GHz 244
10.3.3 User Data Rates with Fixed Wireless Access at 28 GHz 245
10.4 Latency 247
10.4.1 User Plane Latency 247
10.4.2 Low Latency Architecture 253
10.4.3 Control Plane Latency 255
10.5 Link Budgets 257
10.5.1 Link Budget for Sub-6-GHz TDD 257
10.5.2 Link Budget for Low Band FDD 260
10.5.3 Link Budget for Millimeter Waves 260
10.6 Coverage for Sub-6-GHz Band 262
10.6.1 Signal Propagation at 3.5 GHz Band 262
10.6.2 Beamforming Antenna Gain 262
10.6.3 Uplink Coverage Solutions 264
10.7 Massive MIMO and Beamforming Algorithms 269
10.7.1 Antenna Configuration 269
10.7.2 Beamforming Algorithms 271
10.7.3 Radio Network Architecture and Functionality Split 275
10.7.4 RF Solution Benchmarking 277
10.7.5 Distributed MIMO 278
10.8 Packet Scheduling Algorithms 280
10.8.1 Low Latency Scheduling 280
10.8.2 Mini-Slot Scheduling 285
10.9 Spectral Efficiency and Capacity 286
10.9.1 Downlink Spectral Efficiency in 5G Compared to LTE 286
10.9.2 Downlink Spectral Efficiency with Different Antenna Configurations 288
10.9.3 Uplink Spectral Efficiency 288
10.9.4 IMT-2020 Performance Evaluation 289
10.9.5 5G Capacity at Mid-Band 291
10.10 Network Energy Efficiency 291
10.11 Traffic and Device Density 294
10.12 Ultra-Reliability for Mission-Critical Communication 296
10.12.1 Antenna Diversity 296
10.12.2 Macro-Diversity and Multi-Connectivity 296
10.12.3 Interference Cancelation 297
10.12.4 HARQ (Hybrid Automatic Repeat Request) for High Reliability 297
10.13 Mobility and High-Speed Trains 299
10.14 Summary 302
References 302
11 Measurements 305
Yoshihisa Kishiyama and Tetsuro Imai
11.1 Introduction 305
11.2 Propagation Measurements Above 6 GHz 306
11.2.1 Fundamental Experiments 306
11.2.2 Urban Microcellular Scenario 312
11.2.3 Indoor Hotspot Scenario 315
11.2.4 Outdoor-to-Indoor Scenario 319
11.3 Field Experiments with Sub-6-GHz 5G Radio 326
11.3.1 Experimental System with Higher Rank MIMO 326
11.3.2 Field Experiments 328
11.4 Field Experiments of Millimeter Wave 5G Radio 332
11.4.1 Experimental System with Beamforming and Beam Tracking 332
11.4.2 Field Experiments 336
11.5 Summary 344
References 345
12 5G RF Design Challenges 349
Petri Vasenkari, Dominique Brunel, and Laurent Noel
12.1 Introduction 349
12.2 Impact of New Physical Layer on RF Performance 350
12.2.1 New Uplink Waveforms 350
12.2.2 New Frequency Range Definition 352
12.2.3 Impact of NSA Operation on the 5G UE RF Front-End 354
12.2.4 New Features Impacting UE RF Front-End 358
12.2.5 RAN4 Technical Specification (TS) Survival Guide 361
12.3 5G Standalone Performance Aspects in Frequency Range 1 363
12.3.1 New Channel Bandwidths and Improved SU 363
12.3.2 Impact of Large Channel Bandwidths on PA Efficiency Enhancement Techniques 365
12.3.3 FR1 Frequency Bands 366
12.3.4 Transmitter Chain Aspects 369
12.4 5G Standalone Performance Aspects in mmWave Frequency Range 2 373
12.4.1 Channel Bandwidths and SU 373
12.4.2 FR2 Bands 373
12.4.3 FR2 Key RF Parameters 374
12.4.4 Transmitter Aspects 376
12.4.5 Multi-Band Support and Carrier Aggregation 378
12.4.6 OTA Conformance Test Challenges 378
12.5 Dual Uplink Performance Challenges for NSA Operation 381
12.5.1 From Single UL to Dual UL Operation 381
12.5.2 EN-DC: Explosion of LTE-CA Combinations as Baseline to 5G 383
12.5.3 FR1 UE Types and Power Sharing in EN-DC 383
12.5.4 Dual Uplink Challenges for EN-DC Operation in FR1 383
12.5.5 Dual Uplink Challenges for EN-DC and NN-DC Operation in FR2 391
12.6 Examples of UE Implementation Challenges 392
12.6.1 More Antennas, More Bands to Multiplex, and More Concurrency 392
12.6.2 FR2 Antenna Integration and Smartphone Design 395
12.7 Summary 396
References 397
13 5G Modem Design Challenges 399
YihShen Chen, Jiann-Ching Guey, Chienhwa Hwang, PeiKai Liao, Guillaume Sebire, Weide Wu, and Weidong Yang
13.1 Introduction 399
13.2 High Data Rate, System Flexibility, and Computational Complexity 401
13.2.1 Channel Coding Aspects Versus UE Complexity 401
13.2.2 MIMO and Network Flexibility Versus UE Complexity 404
13.3 Low Latency, Flexible Timing, and Modem Control Flow Complexity 406
13.3.1 Low Latency Aspects Versus Modem Processing Capability 407
13.3.2 System Flexibility Versus Modem Control Timing 411
13.4 Multi-RAT Coexistence and Modem Architecture 413
13.4.1 Dual Connectivity and Modem Architecture 414
13.4.2 Impact of LTE/NR Coexistence on Modem Design 416
13.4.3 Uplink Transmission Design for Minimizing Intermodulation Effect 418
13.5 Wider Bandwidth Operation and Modem Power Consumption 419
13.5.1 Modem Power Consumption in Daily Use 419
13.5.2 Reducing Modem Power Consumption by Bandwidth Adaptation 422
13.5.3 Impacts on Modem Design 426
13.6 Summary 428
References 429
14 Internet of Things Optimization 431
Harri Holma, Rapeepat Ratasuk, and Mads Lauridsen
14.1 Introduction 431
14.2 IoT Optimization in LTE Radio 433
14.3 LTE-M 436
14.4 Narrowband-IoT 439
14.5 IoT Optimization in LTE Core Network 442
14.6 Coverage 443
14.7 Delay and Capacity 444
14.8 Power Saving Features 446
14.9 NB-IoT Power Consumption Measurements 448
14.10 IoT Solution Benchmarking 449
14.11 IoT Optimizations in 5G 451
14.12 Summary 458
References 459
15 5G Phase 2 and Beyond 461
Antti Toskala
15.1 Introduction 461
15.2 3GPP Release 16 Timing and Key Themes 461
15.2.1 5G Unlicensed (5G-U) 462
15.2.2 Industrial IoT and URLLC Enhancements 464
15.2.3 Toward Dynamic TDD 466
15.2.4 Integrated Access and Backhaul 467
15.2.5 Mobility Enhancements 469
15.2.6 MIMO Enhancements 470
15.2.7 Multi-Radio Dual Connectivity Enhancements 470
15.2.8 Two-Step RACH 471
15.2.9 UE Power Consumption Reduction 471
15.2.10 LightweightMobile Broadband with NR-Light 472
15.2.11 5G V2X 473
15.2.12 New 5G Core Features in Release 16 474
15.3 Summary and Outlook for Release 17 475
References 476
16 LTE-Advanced Evolution 477
Harri Holma and Timo Lunttila
16.1 Introduction 477
16.2 Overview of LTE Evolution 478
16.3 LTE-Advanced Pro Technologies 481
16.3.1 Multi-Gbps Data Rates with Carrier Aggregation Evolution 481
16.3.2 Utilization of 5 GHz Unlicensed Band 482
16.3.3 Enhanced Spectral Efficiency with 3D Beamforming and Interference Cancelation 485
16.3.4 Extreme Local Capacity with Ultra-Dense Network 487
16.3.5 Millisecond Latency with Shorter Transmission Time Interval 487
16.3.6 IoT Optimization 490
16.3.7 D2D Communications 490
16.3.8 Public Safety 492
16.4 5G and LTE Benchmarking 494
16.4.1 Peak Data Rate 495
16.4.2 Cell Edge Data Rate 495
16.4.3 Spectral Efficiency 496
16.4.4 Mobility 496
16.4.5 Traffic Density 497
16.4.6 Device Density 497
16.5 Summary 498
References 499
Index 501
Erscheinungsdatum | 30.12.2019 |
---|---|
Verlagsort | Hoboken |
Sprache | englisch |
Maße | 171 x 251 mm |
Gewicht | 1072 g |
Themenwelt | Technik ► Elektrotechnik / Energietechnik |
Technik ► Nachrichtentechnik | |
ISBN-10 | 1-119-23631-2 / 1119236312 |
ISBN-13 | 978-1-119-23631-3 / 9781119236313 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich