5G Technology -

5G Technology

3GPP New Radio
Buch | Hardcover
536 Seiten
2019
Wiley-Blackwell (Verlag)
978-1-119-23631-3 (ISBN)
100,53 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
A comprehensive guide to 5G technology, applications and potential for the future

5G brings new technology solutions to the 5G mobile networks including new spectrum options, new antenna structures, new physical layer and protocols designs and new network architectures. 5G Technology: 3GPP New Radio is a comprehensive resource that offers explanations of 5G specifications, performance evaluations, aspects of device design, practical deployment considerations and illustrative examples from field experiences.

With contributions from a panel of international experts on the topic, the book presents the main new technology components in 5G and describes the physical layer, radio protocols and network performance. The authors review the deployment aspects such as site density and transport network and explore the 5G performance aspects including data rates and coverage and latency. The book also contains illustrative examples of practical field measurement. In addition, the book includes the most recent developments in 4G LTE evolution and offers an outlook for the future of the evolution of 5G. This important book:



Offers an introduction to 5G technology and its applications
Contains contributions from international experts on the topic
Reviews the main technology components in 5G
Includes information on the optimisation of the Internet of things
Presents illustrative examples of practical field measurements

Written for students and scientists interested in 5G technology, 5G Technology: 3GPP New Radio provides a clear understanding of the underlying 5G technology that promotes the opportunity to take full benefit of new capabilities.

HARRI HOLMA, Fellow, Nokia Bell Labs, Finland. Harri Holma has edited seven books about 3G and 4G technologies since 2001. Dr Holma is working with Nokia Bell Labs with main interest in radio systems and mobile technologies.

ANTTI TOSKALA, Head of 3GPP Radio Standardization, Nokia Bell Labs, Finland. Antti Toskala's group was responsible for the standardization of WCDMA physical layer, High Speed Downlink Packet Access (HSDPA) and for the start of uplink packet data evolution (HSUPA). As part of the 2010 LTE World Summit LTE Awards, he received the "Award for Individual Contribution for LTE Development" recognizing his contribution to both LTE standardization and LTE knowledge spreading in the industry.

TAKEHIRO NAKAMURA, VP and Managing Director of the 5G Laboratories in NTT DOCOMO, Inc., Japan. Mr Nakamura joined NTT Laboratories in 1990. He has been engaged in the standardization activities for the WCDMA, HSPA, LTE/LTE-Advanced and 5G at ARIB in Japan since 1997. He has been the leader of 2020 and Beyond Ad Hoc (20B AH) in ARIB since October 2013.

List of Contributors xvii


Foreword xix


Preface xxi


Acknowledgment xxiii


1 Introduction 1
Harri Holma, Antti Toskala, Takehiro Nakamura, and Tommi Uitto


1.1 Introduction 1


1.2 5G Targets 3


1.3 5G Technology Components 3


1.4 5G Spectrum 4


1.5 5G Capabilities 5


1.6 5G Capacity Boost 7


1.7 5G Standardization and Schedule 8


1.8 5G Use Cases 9


1.9 Evolution Path from LTE to 5G 10


1.10 Mobile Data Traffic Growth 10


1.11 Summary 11


Reference 11


2 5G Targets and Standardization 13
Hiroyuki Atarashi, Mikio Iwamura, Satoshi Nagata, Takehiro Nakamura, and Antti Toskala


2.1 Introduction 13


2.2 ITU 13


2.2.1 IMT Vision for 2020 and Beyond 14


2.2.2 Standardization of IMT-2020 Radio Interface Technologies 15


2.3 NGMN 17


2.3.1 NGMN 5G Use Cases 18


2.3.2 NGMN 5G Requirements 19


2.3.3 NGMN 5G Architecture Design Principles 20


2.3.4 Spectrum, Intellectual Property Rights (IPR), and Further Recommendations by NGMN 21


2.4 3GPP Schedule and Phasing 22


References 25


3 Technology Components 27
Harri Holma


3.1 Introduction 27


3.2 Spectrum Utilization 27


3.2.1 Frequency Bands 27


3.2.2 Bandwidth Options 29


3.2.3 Spectrum Occupancy 29


3.2.4 Control Channel Flexibility 30


3.2.5 Dynamic Spectrum Sharing 31


3.3 Beamforming 31


3.4 Flexible Physical Layer and Protocols 33


3.4.1 Flexible Numerology 33


3.4.2 Short Transmission Time and Mini-slot 34


3.4.3 Self-Contained Subframe 35


3.4.4 Asynchronous HARQ 36


3.4.5 Lean Carrier 37


3.4.6 Adaptive Reference Signals 38


3.4.7 Adaptive UE Specific Bandwidth 38


3.4.8 Distributed MIMO 39


3.4.9 Waveforms 39


3.4.10 Channel Coding 41


3.4.11 Pipeline Processing and Front-Loaded Reference Signals 41


3.4.12 Connected Inactive State 41


3.4.13 Grant-Free Access 43


3.4.14 Cell Radius of 300 km 43


3.5 Network Slicing 44


3.6 Dual Connectivity with LTE 44


3.7 Radio Cloud and Edge Computing 46


3.8 Summary 47


Reference 47


4 Spectrum 49
Harri Holma and Takehiro Nakamura


4.1 Introduction 49


4.2 Millimeter Wave Spectrum Above 20 GHz 52


4.3 Mid-Band Spectrum at 3.3-5.0 GHz and at 2.6 GHz 55


4.4 Low-Band Spectrum Below 3 GHz 58


4.5 Unlicensed Band 59


4.6 Shared Band 62


4.7 3GPP Frequency Variants 64


4.8 Summary 64


References 64


5 5G Architecture 67
Antti Toskala and Miikka Poikselka


5.1 Introduction 67


5.2 5G Architecture Options 67


5.3 5G Core Network Architecture 70


5.3.1 Access and Mobility Management Function 72


5.3.2 Session Management Function 73


5.3.3 User Plane Function 73


5.3.4 Data Storage Architecture 73


5.3.5 Policy Control Function 73


5.3.6 Network Exposure Function 74


5.3.7 Network Repository Function 74


5.3.8 Network Slice Selection 74


5.3.9 Non-3GPP Interworking Function 74


5.3.10 Auxiliary 5G Core Functions 74


5.4 5G RAN Architecture 75


5.4.1 NG-Interface 78


5.4.2 Xn-Interface 79


5.4.3 E1-Interface 80


5.4.4 F1-Interface 80


5.5 Network Slicing 81


5.5.1 Interworking with LTE 82


5.6 Summary 85


References 86


6 5G Physical Layer 87
Mihai Enescu, Keeth Jayasinghe, Karri Ranta-Aho, Karol Schober, and Antti Toskala


6.1 Introduction 87


6.2 5G Multiple Access Principle 88


6.3 Physical Channels and Signals 92


6.4 Basic Structures for 5G Frame Structure 95


6.5 5G Channel Structures and Beamforming Basics 98


6.6 Random Access 100


6.7 Downlink User Data Transmission 101


6.8 Uplink User Data Transmission 103


6.9 Uplink Signaling Transmission 105


6.10 Downlink Signaling Transmission 108


6.11 Physical Layer Procedures 111


6.11.1 HARQ Procedure 112


6.11.2 Uplink Power Control 112


6.11.3 Timing Advance 113


6.12 5G MIMO and Beamforming Operation 113


6.12.1 Downlink MIMO Transmission Schemes 113


6.12.2 Beam Management Framework 114


6.12.2.1 Initial Beam Acquisition 116


6.12.2.2 Beam Measurement and Reporting 116


6.12.2.3 Beam Indication: QCL and Transmission Configuration Indicator (TCI) 117


6.12.2.4 Beam Recovery 120


6.12.3 CSI Framework 122


6.12.3.1 Reporting Settings 122


6.12.3.2 Resource Settings 122


6.12.3.3 Reporting Configurations 123


6.12.3.4 Report Quantity Configurations 125


6.12.4 CSI Components 126


6.12.4.1 Channel Quality Indicator (CQI) 126


6.12.4.2 Precoding Matrix Indicator (PMI) 126


6.12.4.3 Resource Indicators: CRI, SSBRI, RI, LI 132


6.12.5 Uplink MIMO Transmission Schemes 132


6.12.5.1 Codebook-Based Uplink Transmission 132


6.12.5.2 Non-Codebook-Based Uplink Transmission 133


6.13 Channel Coding with 5G 133


6.13.1 Channel Coding for Data Channel 134


6.13.1.1 5G LDPC Code Design 135


6.13.1.2 5G LDPC Coding Chain 137


6.13.2 Channel Coding for Control Channels 140


6.13.2.1 5G Polar Coding Design 140


6.14 Dual Connectivity 142


6.15 5G Data Rates 144


6.16 Physical Layer Measurements 145


6.17 UE Capability 146


6.18 Summary 147


References 148


7 5G Radio Protocols 149
Tero Henttonen, Jarkko Koskela, Benoist Sebire, and Antti Toskala


7.1 Introduction 149


7.2 5G Radio Protocol Layers 150


7.3 SDAP 151


7.3.1 Overview 151


7.3.2 QoS Flow Remapping 153


7.3.3 MDBV 155


7.3.4 Header 155


7.4 PDCP 156


7.4.1 Overview 156


7.4.2 Reordering 156


7.4.3 Security 157


7.4.4 Header Compression 157


7.4.5 Duplicates and Status Reports 158


7.4.6 Duplication 159


7.5 RLC 160


7.5.1 Overview 160


7.5.2 Segmentation 160


7.5.3 Error Correction 161


7.5.4 Transmissions Modes 161


7.5.5 Duplication 161


7.6 MAC Layer 162


7.6.1 Overview 162


7.6.2 Logical Channels 162


7.6.3 Random Access Procedure 163


7.6.4 HARQ and Transmissions 163


7.6.5 Scheduling Request 164


7.6.6 Logical Channel Prioritization and Multiplexing 164


7.6.7 BSR 165


7.6.8 PHR 166


7.6.9 DRX 166


7.6.10 Bandwidth Parts 166


7.6.11 BFD and Recovery 167


7.6.12 Other Functions 167


7.6.13 MAC PDU Structure 168


7.7 The RRC Protocol 168


7.7.1 Overview 168


7.7.2 Broadcast of System Information 171


7.7.3 Paging 174


7.7.4 Overview of Idle and Inactive Mode Mobility 175


7.7.5 RRC Connection Control and Mobility 179


7.7.6 RRC Support of Upper Layers 183


7.7.7 Different Versions of Release 15 RRC Specifications 184


7.8 Radio Protocols in RAN Architecture 185


7.9 Summary 185


References 186


8 Deployment Aspects 187
Harri Holma, Riku Luostari, Jussi Reunanen, and Puripong Thepchatri


8.1 Introduction 187


8.2 Spectrum Resources 188


8.2.1 Spectrum Refarming and Dynamic Spectrum Sharing 188


8.3 Network Density 190


8.4 Mobile Data Traffic Growth 190


8.4.1 Mobile Data Volume 190


8.4.2 Traffic Asymmetry 191


8.5 Base Station Site Solutions 192


8.6 Electromagnetic Field (EMF) Considerations 194


8.7 Network Synchronization and Coordination Requirements 195


8.7.1 Main Interference Scenarios in TDD System 196


8.7.2 TDD Frame Configuration Options 197


8.7.3 Cell Size and Random Access Channel 197


8.7.4 Guard Period and Safety Zone 198


8.7.5 Intra-Frequency Operation 199


8.7.6 Inter-Operator Synchronization 201


8.7.7 Synchronization Requirements in 3GPP 202


8.7.8 Synchronization from Global Navigation Satellite System (GNSS) 204


8.7.9 Synchronization with ToP 205


8.7.10 Timing Alignment Between Vendors 208


8.8 5G Overlay with Another Vendor LTE 209


8.9 Summary 210


References 211


9 Transport 213
Esa Markus Metsala and Juha Salmelin


9.1 5G Transport Network 213


9.1.1 5G Transport 213


9.1.2 Types of 5G Transport 214


9.1.3 Own versus Leased Transport 215


9.1.4 Common Transport 216


9.1.5 Mobile Backhaul Tiers 216


9.1.6 Logical and Physical Transport Topology 218


9.1.7 Standards Viewpoint 218


9.2 Capacity and Latency 219


9.2.1 Transport Capacity Upgrades 219


9.2.2 Access Link 220


9.2.3 Distribution Tier 221


9.2.4 Backhaul and High Layer Fronthaul Capacity 221


9.2.5 Low Layer Fronthaul Capacity 222


9.2.6 Latency 223


9.2.7 QoS Marking 224


9.3 Technologies 225


9.3.1 Client Ports 225


9.3.2 Networking Technologies Overview 226


9.4 Fronthaul and Backhaul Interfaces 228


9.4.1 Low Layer Fronthaul 228


9.4.2 NG Interface 230


9.4.3 Xn/X2 Interfaces 231


9.4.4 F1 Interface 231


9.5 Specific Topics 232


9.5.1 Network Slicing in Transport 232


9.5.2 URLLC Transport 233


9.5.3 IAB (Integrated Access and Backhaul) 234


9.5.4 NTNs (Non-Terrestrial Networks) 234


9.5.5 Time-Sensitive Networks 235


References 236


10 5G Performance 239
Harri Holma, Suresh Kalyanasundaram, and Venkat Venkatesan


10.1 Introduction 239


10.2 Peak Data Rates 241


10.3 Practical Data Rates 243


10.3.1 User Data Rates at 2.5-5.0 GHz 243


10.3.2 User Data Rates at 28 GHz 244


10.3.3 User Data Rates with Fixed Wireless Access at 28 GHz 245


10.4 Latency 247


10.4.1 User Plane Latency 247


10.4.2 Low Latency Architecture 253


10.4.3 Control Plane Latency 255


10.5 Link Budgets 257


10.5.1 Link Budget for Sub-6-GHz TDD 257


10.5.2 Link Budget for Low Band FDD 260


10.5.3 Link Budget for Millimeter Waves 260


10.6 Coverage for Sub-6-GHz Band 262


10.6.1 Signal Propagation at 3.5 GHz Band 262


10.6.2 Beamforming Antenna Gain 262


10.6.3 Uplink Coverage Solutions 264


10.7 Massive MIMO and Beamforming Algorithms 269


10.7.1 Antenna Configuration 269


10.7.2 Beamforming Algorithms 271


10.7.3 Radio Network Architecture and Functionality Split 275


10.7.4 RF Solution Benchmarking 277


10.7.5 Distributed MIMO 278


10.8 Packet Scheduling Algorithms 280


10.8.1 Low Latency Scheduling 280


10.8.2 Mini-Slot Scheduling 285


10.9 Spectral Efficiency and Capacity 286


10.9.1 Downlink Spectral Efficiency in 5G Compared to LTE 286


10.9.2 Downlink Spectral Efficiency with Different Antenna Configurations 288


10.9.3 Uplink Spectral Efficiency 288


10.9.4 IMT-2020 Performance Evaluation 289


10.9.5 5G Capacity at Mid-Band 291


10.10 Network Energy Efficiency 291


10.11 Traffic and Device Density 294


10.12 Ultra-Reliability for Mission-Critical Communication 296


10.12.1 Antenna Diversity 296


10.12.2 Macro-Diversity and Multi-Connectivity 296


10.12.3 Interference Cancelation 297


10.12.4 HARQ (Hybrid Automatic Repeat Request) for High Reliability 297


10.13 Mobility and High-Speed Trains 299


10.14 Summary 302


References 302


11 Measurements 305
Yoshihisa Kishiyama and Tetsuro Imai


11.1 Introduction 305


11.2 Propagation Measurements Above 6 GHz 306


11.2.1 Fundamental Experiments 306


11.2.2 Urban Microcellular Scenario 312


11.2.3 Indoor Hotspot Scenario 315


11.2.4 Outdoor-to-Indoor Scenario 319


11.3 Field Experiments with Sub-6-GHz 5G Radio 326


11.3.1 Experimental System with Higher Rank MIMO 326


11.3.2 Field Experiments 328


11.4 Field Experiments of Millimeter Wave 5G Radio 332


11.4.1 Experimental System with Beamforming and Beam Tracking 332


11.4.2 Field Experiments 336


11.5 Summary 344


References 345


12 5G RF Design Challenges 349
Petri Vasenkari, Dominique Brunel, and Laurent Noel


12.1 Introduction 349


12.2 Impact of New Physical Layer on RF Performance 350


12.2.1 New Uplink Waveforms 350


12.2.2 New Frequency Range Definition 352


12.2.3 Impact of NSA Operation on the 5G UE RF Front-End 354


12.2.4 New Features Impacting UE RF Front-End 358


12.2.5 RAN4 Technical Specification (TS) Survival Guide 361


12.3 5G Standalone Performance Aspects in Frequency Range 1 363


12.3.1 New Channel Bandwidths and Improved SU 363


12.3.2 Impact of Large Channel Bandwidths on PA Efficiency Enhancement Techniques 365


12.3.3 FR1 Frequency Bands 366


12.3.4 Transmitter Chain Aspects 369


12.4 5G Standalone Performance Aspects in mmWave Frequency Range 2 373


12.4.1 Channel Bandwidths and SU 373


12.4.2 FR2 Bands 373


12.4.3 FR2 Key RF Parameters 374


12.4.4 Transmitter Aspects 376


12.4.5 Multi-Band Support and Carrier Aggregation 378


12.4.6 OTA Conformance Test Challenges 378


12.5 Dual Uplink Performance Challenges for NSA Operation 381


12.5.1 From Single UL to Dual UL Operation 381


12.5.2 EN-DC: Explosion of LTE-CA Combinations as Baseline to 5G 383


12.5.3 FR1 UE Types and Power Sharing in EN-DC 383


12.5.4 Dual Uplink Challenges for EN-DC Operation in FR1 383


12.5.5 Dual Uplink Challenges for EN-DC and NN-DC Operation in FR2 391


12.6 Examples of UE Implementation Challenges 392


12.6.1 More Antennas, More Bands to Multiplex, and More Concurrency 392


12.6.2 FR2 Antenna Integration and Smartphone Design 395


12.7 Summary 396


References 397


13 5G Modem Design Challenges 399
YihShen Chen, Jiann-Ching Guey, Chienhwa Hwang, PeiKai Liao, Guillaume Sebire, Weide Wu, and Weidong Yang


13.1 Introduction 399


13.2 High Data Rate, System Flexibility, and Computational Complexity 401


13.2.1 Channel Coding Aspects Versus UE Complexity 401


13.2.2 MIMO and Network Flexibility Versus UE Complexity 404


13.3 Low Latency, Flexible Timing, and Modem Control Flow Complexity 406


13.3.1 Low Latency Aspects Versus Modem Processing Capability 407


13.3.2 System Flexibility Versus Modem Control Timing 411


13.4 Multi-RAT Coexistence and Modem Architecture 413


13.4.1 Dual Connectivity and Modem Architecture 414


13.4.2 Impact of LTE/NR Coexistence on Modem Design 416


13.4.3 Uplink Transmission Design for Minimizing Intermodulation Effect 418


13.5 Wider Bandwidth Operation and Modem Power Consumption 419


13.5.1 Modem Power Consumption in Daily Use 419


13.5.2 Reducing Modem Power Consumption by Bandwidth Adaptation 422


13.5.3 Impacts on Modem Design 426


13.6 Summary 428


References 429


14 Internet of Things Optimization 431
Harri Holma, Rapeepat Ratasuk, and Mads Lauridsen


14.1 Introduction 431


14.2 IoT Optimization in LTE Radio 433


14.3 LTE-M 436


14.4 Narrowband-IoT 439


14.5 IoT Optimization in LTE Core Network 442


14.6 Coverage 443


14.7 Delay and Capacity 444


14.8 Power Saving Features 446


14.9 NB-IoT Power Consumption Measurements 448


14.10 IoT Solution Benchmarking 449


14.11 IoT Optimizations in 5G 451


14.12 Summary 458


References 459


15 5G Phase 2 and Beyond 461
Antti Toskala


15.1 Introduction 461


15.2 3GPP Release 16 Timing and Key Themes 461


15.2.1 5G Unlicensed (5G-U) 462


15.2.2 Industrial IoT and URLLC Enhancements 464


15.2.3 Toward Dynamic TDD 466


15.2.4 Integrated Access and Backhaul 467


15.2.5 Mobility Enhancements 469


15.2.6 MIMO Enhancements 470


15.2.7 Multi-Radio Dual Connectivity Enhancements 470


15.2.8 Two-Step RACH 471


15.2.9 UE Power Consumption Reduction 471


15.2.10 LightweightMobile Broadband with NR-Light 472


15.2.11 5G V2X 473


15.2.12 New 5G Core Features in Release 16 474


15.3 Summary and Outlook for Release 17 475


References 476


16 LTE-Advanced Evolution 477
Harri Holma and Timo Lunttila


16.1 Introduction 477


16.2 Overview of LTE Evolution 478


16.3 LTE-Advanced Pro Technologies 481


16.3.1 Multi-Gbps Data Rates with Carrier Aggregation Evolution 481


16.3.2 Utilization of 5 GHz Unlicensed Band 482


16.3.3 Enhanced Spectral Efficiency with 3D Beamforming and Interference Cancelation 485


16.3.4 Extreme Local Capacity with Ultra-Dense Network 487


16.3.5 Millisecond Latency with Shorter Transmission Time Interval 487


16.3.6 IoT Optimization 490


16.3.7 D2D Communications 490


16.3.8 Public Safety 492


16.4 5G and LTE Benchmarking 494


16.4.1 Peak Data Rate 495


16.4.2 Cell Edge Data Rate 495


16.4.3 Spectral Efficiency 496


16.4.4 Mobility 496


16.4.5 Traffic Density 497


16.4.6 Device Density 497


16.5 Summary 498


References 499


Index 501

Erscheinungsdatum
Verlagsort Hoboken
Sprache englisch
Maße 171 x 251 mm
Gewicht 1072 g
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
ISBN-10 1-119-23631-2 / 1119236312
ISBN-13 978-1-119-23631-3 / 9781119236313
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
DIN-Normen und Technische Regeln für die Elektroinstallation

von DIN; ZVEH; Burkhard Schulze

Buch | Softcover (2023)
Beuth (Verlag)
86,00